|
import modules.core as core |
|
import os |
|
import torch |
|
import modules.path |
|
|
|
from comfy.model_base import SDXL, SDXLRefiner |
|
|
|
|
|
xl_base: core.StableDiffusionModel = None |
|
xl_base_hash = '' |
|
|
|
xl_refiner: core.StableDiffusionModel = None |
|
xl_refiner_hash = '' |
|
|
|
xl_base_patched: core.StableDiffusionModel = None |
|
xl_base_patched_hash = '' |
|
|
|
|
|
def refresh_base_model(name): |
|
global xl_base, xl_base_hash, xl_base_patched, xl_base_patched_hash |
|
if xl_base_hash == str(name): |
|
return |
|
|
|
filename = os.path.join(modules.path.modelfile_path, name) |
|
|
|
if xl_base is not None: |
|
xl_base.to_meta() |
|
xl_base = None |
|
|
|
xl_base = core.load_model(filename) |
|
if not isinstance(xl_base.unet.model, SDXL): |
|
print('Model not supported. Fooocus only support SDXL model as the base model.') |
|
xl_base = None |
|
xl_base_hash = '' |
|
refresh_base_model(modules.path.default_base_model_name) |
|
xl_base_hash = name |
|
xl_base_patched = xl_base |
|
xl_base_patched_hash = '' |
|
return |
|
|
|
xl_base_hash = name |
|
xl_base_patched = xl_base |
|
xl_base_patched_hash = '' |
|
print(f'Base model loaded: {xl_base_hash}') |
|
|
|
return |
|
|
|
|
|
def refresh_refiner_model(name): |
|
global xl_refiner, xl_refiner_hash |
|
if xl_refiner_hash == str(name): |
|
return |
|
|
|
if name == 'None': |
|
xl_refiner = None |
|
xl_refiner_hash = '' |
|
print(f'Refiner unloaded.') |
|
return |
|
|
|
filename = os.path.join(modules.path.modelfile_path, name) |
|
|
|
if xl_refiner is not None: |
|
xl_refiner.to_meta() |
|
xl_refiner = None |
|
|
|
xl_refiner = core.load_model(filename) |
|
if not isinstance(xl_refiner.unet.model, SDXLRefiner): |
|
print('Model not supported. Fooocus only support SDXL refiner as the refiner.') |
|
xl_refiner = None |
|
xl_refiner_hash = '' |
|
print(f'Refiner unloaded.') |
|
return |
|
|
|
xl_refiner_hash = name |
|
print(f'Refiner model loaded: {xl_refiner_hash}') |
|
|
|
xl_refiner.vae.first_stage_model.to('meta') |
|
xl_refiner.vae = None |
|
return |
|
|
|
|
|
def refresh_loras(loras): |
|
global xl_base, xl_base_patched, xl_base_patched_hash |
|
if xl_base_patched_hash == str(loras): |
|
return |
|
|
|
model = xl_base |
|
for name, weight in loras: |
|
if name == 'None': |
|
continue |
|
|
|
filename = os.path.join(modules.path.lorafile_path, name) |
|
model = core.load_lora(model, filename, strength_model=weight, strength_clip=weight) |
|
xl_base_patched = model |
|
xl_base_patched_hash = str(loras) |
|
print(f'LoRAs loaded: {xl_base_patched_hash}') |
|
|
|
return |
|
|
|
|
|
refresh_base_model(modules.path.default_base_model_name) |
|
refresh_refiner_model(modules.path.default_refiner_model_name) |
|
refresh_loras([(modules.path.default_lora_name, 0.5), ('None', 0.5), ('None', 0.5), ('None', 0.5), ('None', 0.5)]) |
|
|
|
positive_conditions_cache = None |
|
negative_conditions_cache = None |
|
positive_conditions_refiner_cache = None |
|
negative_conditions_refiner_cache = None |
|
|
|
|
|
def clean_prompt_cond_caches(): |
|
global positive_conditions_cache, negative_conditions_cache, \ |
|
positive_conditions_refiner_cache, negative_conditions_refiner_cache |
|
positive_conditions_cache = None |
|
negative_conditions_cache = None |
|
positive_conditions_refiner_cache = None |
|
negative_conditions_refiner_cache = None |
|
return |
|
|
|
|
|
@torch.no_grad() |
|
def process(positive_prompt, negative_prompt, steps, switch, width, height, image_seed, callback): |
|
global positive_conditions_cache, negative_conditions_cache, \ |
|
positive_conditions_refiner_cache, negative_conditions_refiner_cache |
|
|
|
positive_conditions = core.encode_prompt_condition(clip=xl_base_patched.clip, prompt=positive_prompt) if positive_conditions_cache is None else positive_conditions_cache |
|
negative_conditions = core.encode_prompt_condition(clip=xl_base_patched.clip, prompt=negative_prompt) if negative_conditions_cache is None else negative_conditions_cache |
|
|
|
positive_conditions_cache = positive_conditions |
|
negative_conditions_cache = negative_conditions |
|
|
|
empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=1) |
|
|
|
if xl_refiner is not None: |
|
positive_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=positive_prompt) if positive_conditions_refiner_cache is None else positive_conditions_refiner_cache |
|
negative_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=negative_prompt) if negative_conditions_refiner_cache is None else negative_conditions_refiner_cache |
|
|
|
positive_conditions_refiner_cache = positive_conditions_refiner |
|
negative_conditions_refiner_cache = negative_conditions_refiner |
|
|
|
sampled_latent = core.ksampler_with_refiner( |
|
model=xl_base_patched.unet, |
|
positive=positive_conditions, |
|
negative=negative_conditions, |
|
refiner=xl_refiner.unet, |
|
refiner_positive=positive_conditions_refiner, |
|
refiner_negative=negative_conditions_refiner, |
|
refiner_switch_step=switch, |
|
latent=empty_latent, |
|
steps=steps, start_step=0, last_step=steps, disable_noise=False, force_full_denoise=True, |
|
seed=image_seed, |
|
callback_function=callback |
|
) |
|
|
|
else: |
|
sampled_latent = core.ksampler( |
|
model=xl_base_patched.unet, |
|
positive=positive_conditions, |
|
negative=negative_conditions, |
|
latent=empty_latent, |
|
steps=steps, start_step=0, last_step=steps, disable_noise=False, force_full_denoise=True, |
|
seed=image_seed, |
|
callback_function=callback |
|
) |
|
|
|
decoded_latent = core.decode_vae(vae=xl_base_patched.vae, latent_image=sampled_latent) |
|
|
|
images = core.image_to_numpy(decoded_latent) |
|
|
|
return images |
|
|