|
import torch |
|
import comfy.model_base |
|
import comfy.ldm.modules.diffusionmodules.openaimodel |
|
import comfy.samplers |
|
import modules.anisotropic as anisotropic |
|
|
|
from comfy.samplers import model_management, lcm, math |
|
from comfy.ldm.modules.diffusionmodules.openaimodel import timestep_embedding, forward_timestep_embed |
|
|
|
|
|
sharpness = 2.0 |
|
|
|
|
|
def sampling_function_patched(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={}, |
|
seed=None): |
|
def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in): |
|
area = (x_in.shape[2], x_in.shape[3], 0, 0) |
|
strength = 1.0 |
|
if 'timestep_start' in cond[1]: |
|
timestep_start = cond[1]['timestep_start'] |
|
if timestep_in[0] > timestep_start: |
|
return None |
|
if 'timestep_end' in cond[1]: |
|
timestep_end = cond[1]['timestep_end'] |
|
if timestep_in[0] < timestep_end: |
|
return None |
|
if 'area' in cond[1]: |
|
area = cond[1]['area'] |
|
if 'strength' in cond[1]: |
|
strength = cond[1]['strength'] |
|
|
|
adm_cond = None |
|
if 'adm_encoded' in cond[1]: |
|
adm_cond = cond[1]['adm_encoded'] |
|
|
|
input_x = x_in[:, :, area[2]:area[0] + area[2], area[3]:area[1] + area[3]] |
|
if 'mask' in cond[1]: |
|
|
|
|
|
mask_strength = 1.0 |
|
if "mask_strength" in cond[1]: |
|
mask_strength = cond[1]["mask_strength"] |
|
mask = cond[1]['mask'] |
|
assert (mask.shape[1] == x_in.shape[2]) |
|
assert (mask.shape[2] == x_in.shape[3]) |
|
mask = mask[:, area[2]:area[0] + area[2], area[3]:area[1] + area[3]] * mask_strength |
|
mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1) |
|
else: |
|
mask = torch.ones_like(input_x) |
|
mult = mask * strength |
|
|
|
if 'mask' not in cond[1]: |
|
rr = 8 |
|
if area[2] != 0: |
|
for t in range(rr): |
|
mult[:, :, t:1 + t, :] *= ((1.0 / rr) * (t + 1)) |
|
if (area[0] + area[2]) < x_in.shape[2]: |
|
for t in range(rr): |
|
mult[:, :, area[0] - 1 - t:area[0] - t, :] *= ((1.0 / rr) * (t + 1)) |
|
if area[3] != 0: |
|
for t in range(rr): |
|
mult[:, :, :, t:1 + t] *= ((1.0 / rr) * (t + 1)) |
|
if (area[1] + area[3]) < x_in.shape[3]: |
|
for t in range(rr): |
|
mult[:, :, :, area[1] - 1 - t:area[1] - t] *= ((1.0 / rr) * (t + 1)) |
|
|
|
conditionning = {} |
|
conditionning['c_crossattn'] = cond[0] |
|
if cond_concat_in is not None and len(cond_concat_in) > 0: |
|
cropped = [] |
|
for x in cond_concat_in: |
|
cr = x[:, :, area[2]:area[0] + area[2], area[3]:area[1] + area[3]] |
|
cropped.append(cr) |
|
conditionning['c_concat'] = torch.cat(cropped, dim=1) |
|
|
|
if adm_cond is not None: |
|
conditionning['c_adm'] = adm_cond |
|
|
|
control = None |
|
if 'control' in cond[1]: |
|
control = cond[1]['control'] |
|
|
|
patches = None |
|
if 'gligen' in cond[1]: |
|
gligen = cond[1]['gligen'] |
|
patches = {} |
|
gligen_type = gligen[0] |
|
gligen_model = gligen[1] |
|
if gligen_type == "position": |
|
gligen_patch = gligen_model.set_position(input_x.shape, gligen[2], input_x.device) |
|
else: |
|
gligen_patch = gligen_model.set_empty(input_x.shape, input_x.device) |
|
|
|
patches['middle_patch'] = [gligen_patch] |
|
|
|
return (input_x, mult, conditionning, area, control, patches) |
|
|
|
def cond_equal_size(c1, c2): |
|
if c1 is c2: |
|
return True |
|
if c1.keys() != c2.keys(): |
|
return False |
|
if 'c_crossattn' in c1: |
|
s1 = c1['c_crossattn'].shape |
|
s2 = c2['c_crossattn'].shape |
|
if s1 != s2: |
|
if s1[0] != s2[0] or s1[2] != s2[2]: |
|
return False |
|
|
|
mult_min = lcm(s1[1], s2[1]) |
|
diff = mult_min // min(s1[1], s2[1]) |
|
if diff > 4: |
|
return False |
|
if 'c_concat' in c1: |
|
if c1['c_concat'].shape != c2['c_concat'].shape: |
|
return False |
|
if 'c_adm' in c1: |
|
if c1['c_adm'].shape != c2['c_adm'].shape: |
|
return False |
|
return True |
|
|
|
def can_concat_cond(c1, c2): |
|
if c1[0].shape != c2[0].shape: |
|
return False |
|
|
|
|
|
if (c1[4] is None) != (c2[4] is None): |
|
return False |
|
if c1[4] is not None: |
|
if c1[4] is not c2[4]: |
|
return False |
|
|
|
|
|
if (c1[5] is None) != (c2[5] is None): |
|
return False |
|
if (c1[5] is not None): |
|
if c1[5] is not c2[5]: |
|
return False |
|
|
|
return cond_equal_size(c1[2], c2[2]) |
|
|
|
def cond_cat(c_list): |
|
c_crossattn = [] |
|
c_concat = [] |
|
c_adm = [] |
|
crossattn_max_len = 0 |
|
for x in c_list: |
|
if 'c_crossattn' in x: |
|
c = x['c_crossattn'] |
|
if crossattn_max_len == 0: |
|
crossattn_max_len = c.shape[1] |
|
else: |
|
crossattn_max_len = lcm(crossattn_max_len, c.shape[1]) |
|
c_crossattn.append(c) |
|
if 'c_concat' in x: |
|
c_concat.append(x['c_concat']) |
|
if 'c_adm' in x: |
|
c_adm.append(x['c_adm']) |
|
out = {} |
|
c_crossattn_out = [] |
|
for c in c_crossattn: |
|
if c.shape[1] < crossattn_max_len: |
|
c = c.repeat(1, crossattn_max_len // c.shape[1], 1) |
|
c_crossattn_out.append(c) |
|
|
|
if len(c_crossattn_out) > 0: |
|
out['c_crossattn'] = [torch.cat(c_crossattn_out)] |
|
if len(c_concat) > 0: |
|
out['c_concat'] = [torch.cat(c_concat)] |
|
if len(c_adm) > 0: |
|
out['c_adm'] = torch.cat(c_adm) |
|
return out |
|
|
|
def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in, |
|
model_options): |
|
out_cond = torch.zeros_like(x_in) |
|
out_count = torch.ones_like(x_in) / 100000.0 |
|
|
|
out_uncond = torch.zeros_like(x_in) |
|
out_uncond_count = torch.ones_like(x_in) / 100000.0 |
|
|
|
COND = 0 |
|
UNCOND = 1 |
|
|
|
to_run = [] |
|
for x in cond: |
|
p = get_area_and_mult(x, x_in, cond_concat_in, timestep) |
|
if p is None: |
|
continue |
|
|
|
to_run += [(p, COND)] |
|
if uncond is not None: |
|
for x in uncond: |
|
p = get_area_and_mult(x, x_in, cond_concat_in, timestep) |
|
if p is None: |
|
continue |
|
|
|
to_run += [(p, UNCOND)] |
|
|
|
while len(to_run) > 0: |
|
first = to_run[0] |
|
first_shape = first[0][0].shape |
|
to_batch_temp = [] |
|
for x in range(len(to_run)): |
|
if can_concat_cond(to_run[x][0], first[0]): |
|
to_batch_temp += [x] |
|
|
|
to_batch_temp.reverse() |
|
to_batch = to_batch_temp[:1] |
|
|
|
for i in range(1, len(to_batch_temp) + 1): |
|
batch_amount = to_batch_temp[:len(to_batch_temp) // i] |
|
if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area): |
|
to_batch = batch_amount |
|
break |
|
|
|
input_x = [] |
|
mult = [] |
|
c = [] |
|
cond_or_uncond = [] |
|
area = [] |
|
control = None |
|
patches = None |
|
for x in to_batch: |
|
o = to_run.pop(x) |
|
p = o[0] |
|
input_x += [p[0]] |
|
mult += [p[1]] |
|
c += [p[2]] |
|
area += [p[3]] |
|
cond_or_uncond += [o[1]] |
|
control = p[4] |
|
patches = p[5] |
|
|
|
batch_chunks = len(cond_or_uncond) |
|
input_x = torch.cat(input_x) |
|
c = cond_cat(c) |
|
timestep_ = torch.cat([timestep] * batch_chunks) |
|
|
|
if control is not None: |
|
c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond)) |
|
|
|
transformer_options = {} |
|
if 'transformer_options' in model_options: |
|
transformer_options = model_options['transformer_options'].copy() |
|
|
|
if patches is not None: |
|
if "patches" in transformer_options: |
|
cur_patches = transformer_options["patches"].copy() |
|
for p in patches: |
|
if p in cur_patches: |
|
cur_patches[p] = cur_patches[p] + patches[p] |
|
else: |
|
cur_patches[p] = patches[p] |
|
else: |
|
transformer_options["patches"] = patches |
|
|
|
c['transformer_options'] = transformer_options |
|
|
|
transformer_options['uc_mask'] = torch.Tensor(cond_or_uncond).to(input_x).float()[:, None, None, None] |
|
|
|
if 'model_function_wrapper' in model_options: |
|
output = model_options['model_function_wrapper'](model_function, |
|
{"input": input_x, "timestep": timestep_, "c": c, |
|
"cond_or_uncond": cond_or_uncond}).chunk(batch_chunks) |
|
else: |
|
output = model_function(input_x, timestep_, **c).chunk(batch_chunks) |
|
del input_x |
|
|
|
model_management.throw_exception_if_processing_interrupted() |
|
|
|
for o in range(batch_chunks): |
|
if cond_or_uncond[o] == COND: |
|
out_cond[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += output[ |
|
o] * \ |
|
mult[o] |
|
out_count[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += mult[o] |
|
else: |
|
out_uncond[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += output[ |
|
o] * \ |
|
mult[o] |
|
out_uncond_count[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += \ |
|
mult[o] |
|
del mult |
|
|
|
out_cond /= out_count |
|
del out_count |
|
out_uncond /= out_uncond_count |
|
del out_uncond_count |
|
|
|
return out_cond, out_uncond |
|
|
|
max_total_area = model_management.maximum_batch_area() |
|
if math.isclose(cond_scale, 1.0): |
|
uncond = None |
|
|
|
cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, |
|
model_options) |
|
if "sampler_cfg_function" in model_options: |
|
args = {"cond": cond, "uncond": uncond, "cond_scale": cond_scale, "timestep": timestep} |
|
return model_options["sampler_cfg_function"](args) |
|
else: |
|
return uncond + (cond - uncond) * cond_scale |
|
|
|
|
|
def unet_forward_patched(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs): |
|
uc_mask = transformer_options['uc_mask'] |
|
transformer_options["original_shape"] = list(x.shape) |
|
transformer_options["current_index"] = 0 |
|
|
|
hs = [] |
|
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(self.dtype) |
|
emb = self.time_embed(t_emb) |
|
|
|
if self.num_classes is not None: |
|
assert y.shape[0] == x.shape[0] |
|
emb = emb + self.label_emb(y) |
|
|
|
h = x.type(self.dtype) |
|
for id, module in enumerate(self.input_blocks): |
|
transformer_options["block"] = ("input", id) |
|
h = forward_timestep_embed(module, h, emb, context, transformer_options) |
|
if control is not None and 'input' in control and len(control['input']) > 0: |
|
ctrl = control['input'].pop() |
|
if ctrl is not None: |
|
h += ctrl |
|
hs.append(h) |
|
transformer_options["block"] = ("middle", 0) |
|
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options) |
|
if control is not None and 'middle' in control and len(control['middle']) > 0: |
|
h += control['middle'].pop() |
|
|
|
for id, module in enumerate(self.output_blocks): |
|
transformer_options["block"] = ("output", id) |
|
hsp = hs.pop() |
|
if control is not None and 'output' in control and len(control['output']) > 0: |
|
ctrl = control['output'].pop() |
|
if ctrl is not None: |
|
hsp += ctrl |
|
|
|
h = torch.cat([h, hsp], dim=1) |
|
del hsp |
|
if len(hs) > 0: |
|
output_shape = hs[-1].shape |
|
else: |
|
output_shape = None |
|
h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape) |
|
h = h.type(x.dtype) |
|
x0 = self.out(h) |
|
|
|
alpha = 1.0 - (timesteps / 999.0)[:, None, None, None].clone() |
|
alpha *= 0.001 * sharpness |
|
degraded_x0 = anisotropic.bilateral_blur(x0) * alpha + x0 * (1.0 - alpha) |
|
|
|
x0 = x0 * uc_mask + degraded_x0 * (1.0 - uc_mask) |
|
|
|
return x0 |
|
|
|
|
|
def sdxl_encode_adm_patched(self, **kwargs): |
|
clip_pooled = kwargs["pooled_output"] |
|
width = kwargs.get("width", 768) |
|
height = kwargs.get("height", 768) |
|
crop_w = kwargs.get("crop_w", 0) |
|
crop_h = kwargs.get("crop_h", 0) |
|
target_width = kwargs.get("target_width", width) |
|
target_height = kwargs.get("target_height", height) |
|
|
|
if kwargs.get("prompt_type", "") == "negative": |
|
width *= 0.8 |
|
height *= 0.8 |
|
elif kwargs.get("prompt_type", "") == "positive": |
|
width *= 1.5 |
|
height *= 1.5 |
|
|
|
out = [] |
|
out.append(self.embedder(torch.Tensor([height]))) |
|
out.append(self.embedder(torch.Tensor([width]))) |
|
out.append(self.embedder(torch.Tensor([crop_h]))) |
|
out.append(self.embedder(torch.Tensor([crop_w]))) |
|
out.append(self.embedder(torch.Tensor([target_height]))) |
|
out.append(self.embedder(torch.Tensor([target_width]))) |
|
flat = torch.flatten(torch.cat(out))[None, ] |
|
return torch.cat((clip_pooled.to(flat.device), flat), dim=1) |
|
|
|
|
|
def patch_all(): |
|
comfy.samplers.sampling_function = sampling_function_patched |
|
comfy.model_base.SDXL.encode_adm = sdxl_encode_adm_patched |
|
comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = unet_forward_patched |
|
|