|
import os |
|
import random |
|
import cv2 |
|
import einops |
|
import torch |
|
import numpy as np |
|
|
|
import comfy.model_management |
|
import comfy.utils |
|
|
|
from comfy.sd import load_checkpoint_guess_config |
|
from nodes import VAEDecode, EmptyLatentImage, CLIPTextEncode |
|
from comfy.sample import prepare_mask, broadcast_cond, load_additional_models, cleanup_additional_models |
|
from comfy.samplers import KSampler |
|
|
|
|
|
opCLIPTextEncode = CLIPTextEncode() |
|
opEmptyLatentImage = EmptyLatentImage() |
|
opVAEDecode = VAEDecode() |
|
|
|
|
|
class StableDiffusionModel: |
|
def __init__(self, unet, vae, clip, clip_vision): |
|
self.unet = unet |
|
self.vae = vae |
|
self.clip = clip |
|
self.clip_vision = clip_vision |
|
|
|
|
|
@torch.no_grad() |
|
def load_model(ckpt_filename): |
|
unet, clip, vae, clip_vision = load_checkpoint_guess_config(ckpt_filename) |
|
return StableDiffusionModel(unet=unet, clip=clip, vae=vae, clip_vision=clip_vision) |
|
|
|
|
|
@torch.no_grad() |
|
def encode_prompt_condition(clip, prompt): |
|
return opCLIPTextEncode.encode(clip=clip, text=prompt)[0] |
|
|
|
|
|
@torch.no_grad() |
|
def generate_empty_latent(width=1024, height=1024, batch_size=1): |
|
return opEmptyLatentImage.generate(width=width, height=height, batch_size=batch_size)[0] |
|
|
|
|
|
@torch.no_grad() |
|
def decode_vae(vae, latent_image): |
|
return opVAEDecode.decode(samples=latent_image, vae=vae)[0] |
|
|
|
|
|
def get_previewer(device, latent_format): |
|
from latent_preview import TAESD, TAESDPreviewerImpl |
|
taesd_decoder_path = os.path.abspath(os.path.realpath(os.path.join("models", "vae_approx", |
|
latent_format.taesd_decoder_name))) |
|
|
|
if not os.path.exists(taesd_decoder_path): |
|
print(f"Warning: TAESD previews enabled, but could not find {taesd_decoder_path}") |
|
return None |
|
|
|
taesd = TAESD(None, taesd_decoder_path).to(device) |
|
|
|
def preview_function(x0, step, total_steps): |
|
with torch.no_grad(): |
|
x_sample = taesd.decoder(x0).detach() * 255.0 |
|
x_sample = einops.rearrange(x_sample, 'b c h w -> b h w c') |
|
x_sample = x_sample.cpu().numpy()[..., ::-1].copy().clip(0, 255).astype(np.uint8) |
|
for i, s in enumerate(x_sample): |
|
flag = f'OpenCV Diffusion Preview {i}' |
|
cv2.imshow(flag, s) |
|
cv2.setWindowTitle(flag, f'Preview Image {i} [{step}/{total_steps}]') |
|
cv2.setWindowProperty(flag, cv2.WND_PROP_TOPMOST, 1) |
|
cv2.waitKey(1) |
|
|
|
taesd.preview = preview_function |
|
|
|
return taesd |
|
|
|
|
|
def close_all_preview(): |
|
cv2.destroyAllWindows() |
|
|
|
|
|
@torch.no_grad() |
|
def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=9.0, sampler_name='dpmpp_2m_sde', scheduler='karras', denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False): |
|
seed = seed if isinstance(seed, int) else random.randint(1, 2 ** 64) |
|
|
|
device = comfy.model_management.get_torch_device() |
|
latent_image = latent["samples"] |
|
|
|
if disable_noise: |
|
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") |
|
else: |
|
batch_inds = latent["batch_index"] if "batch_index" in latent else None |
|
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds) |
|
|
|
noise_mask = None |
|
if "noise_mask" in latent: |
|
noise_mask = latent["noise_mask"] |
|
|
|
previewer = get_previewer(device, model.model.latent_format) |
|
|
|
pbar = comfy.utils.ProgressBar(steps) |
|
|
|
def callback(step, x0, x, total_steps): |
|
if previewer and step % 3 == 0: |
|
previewer.preview(x0, step, total_steps) |
|
pbar.update_absolute(step + 1, total_steps, None) |
|
|
|
sigmas = None |
|
disable_pbar = False |
|
|
|
device = comfy.model_management.get_torch_device() |
|
|
|
if noise_mask is not None: |
|
noise_mask = prepare_mask(noise_mask, noise.shape, device) |
|
|
|
comfy.model_management.load_model_gpu(model) |
|
real_model = model.model |
|
|
|
noise = noise.to(device) |
|
latent_image = latent_image.to(device) |
|
|
|
positive_copy = broadcast_cond(positive, noise.shape[0], device) |
|
negative_copy = broadcast_cond(negative, noise.shape[0], device) |
|
|
|
models = load_additional_models(positive, negative, model.model_dtype()) |
|
|
|
sampler = KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, |
|
denoise=denoise, model_options=model.model_options) |
|
|
|
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, |
|
start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, |
|
denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, |
|
seed=seed) |
|
|
|
samples = samples.cpu() |
|
|
|
cleanup_additional_models(models) |
|
|
|
out = latent.copy() |
|
out["samples"] = samples |
|
|
|
return out |
|
|
|
|
|
@torch.no_grad() |
|
def image_to_numpy(x): |
|
return [np.clip(255. * y.cpu().numpy(), 0, 255).astype(np.uint8) for y in x] |
|
|