lllyasviel
commited on
Commit
·
2f3af37
1
Parent(s):
6c4ecfe
1.0.19 (#33)
Browse filesUnlock to allow changing model.
- fooocus_version.py +1 -2
- modules/core.py +13 -3
- modules/default_pipeline.py +128 -28
- modules/path.py +32 -0
- modules/sdxl_styles.py +2 -2
- update_log.md +4 -0
- webui.py +38 -7
fooocus_version.py
CHANGED
@@ -1,2 +1 @@
|
|
1 |
-
version = '1.0.
|
2 |
-
|
|
|
1 |
+
version = '1.0.19'
|
|
modules/core.py
CHANGED
@@ -29,6 +29,14 @@ class StableDiffusionModel:
|
|
29 |
self.clip = clip
|
30 |
self.clip_vision = clip_vision
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
@torch.no_grad()
|
34 |
def load_model(ckpt_filename):
|
@@ -42,8 +50,8 @@ def load_lora(model, lora_filename, strength_model=1.0, strength_clip=1.0):
|
|
42 |
return model
|
43 |
|
44 |
lora = comfy.utils.load_torch_file(lora_filename, safe_load=True)
|
45 |
-
|
46 |
-
return model
|
47 |
|
48 |
|
49 |
@torch.no_grad()
|
@@ -92,7 +100,7 @@ def get_previewer(device, latent_format):
|
|
92 |
@torch.no_grad()
|
93 |
def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=7.0, sampler_name='dpmpp_2m_sde_gpu',
|
94 |
scheduler='karras', denoise=1.0, disable_noise=False, start_step=None, last_step=None,
|
95 |
-
force_full_denoise=False):
|
96 |
# SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"]
|
97 |
# SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
|
98 |
# "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
|
@@ -118,6 +126,8 @@ def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=7.0, sa
|
|
118 |
pbar = comfy.utils.ProgressBar(steps)
|
119 |
|
120 |
def callback(step, x0, x, total_steps):
|
|
|
|
|
121 |
if previewer and step % 3 == 0:
|
122 |
previewer.preview(x0, step, total_steps)
|
123 |
pbar.update_absolute(step + 1, total_steps, None)
|
|
|
29 |
self.clip = clip
|
30 |
self.clip_vision = clip_vision
|
31 |
|
32 |
+
def to_meta(self):
|
33 |
+
if self.unet is not None:
|
34 |
+
self.unet.model.to('meta')
|
35 |
+
if self.clip is not None:
|
36 |
+
self.clip.cond_stage_model.to('meta')
|
37 |
+
if self.vae is not None:
|
38 |
+
self.vae.first_stage_model.to('meta')
|
39 |
+
|
40 |
|
41 |
@torch.no_grad()
|
42 |
def load_model(ckpt_filename):
|
|
|
50 |
return model
|
51 |
|
52 |
lora = comfy.utils.load_torch_file(lora_filename, safe_load=True)
|
53 |
+
unet, clip = comfy.sd.load_lora_for_models(model.unet, model.clip, lora, strength_model, strength_clip)
|
54 |
+
return StableDiffusionModel(unet=unet, clip=clip, vae=model.vae, clip_vision=model.clip_vision)
|
55 |
|
56 |
|
57 |
@torch.no_grad()
|
|
|
100 |
@torch.no_grad()
|
101 |
def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=7.0, sampler_name='dpmpp_2m_sde_gpu',
|
102 |
scheduler='karras', denoise=1.0, disable_noise=False, start_step=None, last_step=None,
|
103 |
+
force_full_denoise=False, callback_function=None):
|
104 |
# SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"]
|
105 |
# SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
|
106 |
# "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
|
|
|
126 |
pbar = comfy.utils.ProgressBar(steps)
|
127 |
|
128 |
def callback(step, x0, x, total_steps):
|
129 |
+
if callback_function is not None:
|
130 |
+
callback_function(step, x0, x, total_steps)
|
131 |
if previewer and step % 3 == 0:
|
132 |
previewer.preview(x0, step, total_steps)
|
133 |
pbar.update_absolute(step + 1, total_steps, None)
|
modules/default_pipeline.py
CHANGED
@@ -1,46 +1,146 @@
|
|
1 |
import modules.core as core
|
2 |
import os
|
3 |
import torch
|
|
|
4 |
|
5 |
-
from
|
6 |
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
xl_base_offset_lora_filename = os.path.join(lorafile_path, 'sd_xl_offset_example-lora_1.0.safetensors')
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
del xl_base.vae
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
@torch.no_grad()
|
20 |
def process(positive_prompt, negative_prompt, steps, switch, width, height, image_seed, callback):
|
21 |
-
positive_conditions = core.encode_prompt_condition(clip=
|
22 |
-
negative_conditions = core.encode_prompt_condition(clip=
|
23 |
-
|
24 |
-
positive_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=positive_prompt)
|
25 |
-
negative_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=negative_prompt)
|
26 |
|
27 |
empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=1)
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
images = core.image_to_numpy(decoded_latent)
|
46 |
|
|
|
1 |
import modules.core as core
|
2 |
import os
|
3 |
import torch
|
4 |
+
import modules.path
|
5 |
|
6 |
+
from comfy.model_base import SDXL, SDXLRefiner
|
7 |
|
8 |
|
9 |
+
xl_base: core.StableDiffusionModel = None
|
10 |
+
xl_base_hash = ''
|
|
|
11 |
|
12 |
+
xl_refiner: core.StableDiffusionModel = None
|
13 |
+
xl_refiner_hash = ''
|
|
|
14 |
|
15 |
+
xl_base_patched: core.StableDiffusionModel = None
|
16 |
+
xl_base_patched_hash = ''
|
17 |
+
|
18 |
+
|
19 |
+
def refresh_base_model(name):
|
20 |
+
global xl_base, xl_base_hash, xl_base_patched, xl_base_patched_hash
|
21 |
+
if xl_base_hash == str(name):
|
22 |
+
return
|
23 |
+
|
24 |
+
filename = os.path.join(modules.path.modelfile_path, name)
|
25 |
+
|
26 |
+
if xl_base is not None:
|
27 |
+
xl_base.to_meta()
|
28 |
+
xl_base = None
|
29 |
+
|
30 |
+
xl_base = core.load_model(filename)
|
31 |
+
if not isinstance(xl_base.unet.model, SDXL):
|
32 |
+
print('Model not supported. Fooocus only support SDXL model as the base model.')
|
33 |
+
xl_base = None
|
34 |
+
xl_base_hash = ''
|
35 |
+
refresh_base_model(modules.path.default_base_model_name)
|
36 |
+
xl_base_hash = name
|
37 |
+
xl_base_patched = xl_base
|
38 |
+
xl_base_patched_hash = ''
|
39 |
+
return
|
40 |
+
|
41 |
+
xl_base_hash = name
|
42 |
+
xl_base_patched = xl_base
|
43 |
+
xl_base_patched_hash = ''
|
44 |
+
print(f'Base model loaded: {xl_base_hash}')
|
45 |
+
|
46 |
+
return
|
47 |
+
|
48 |
+
|
49 |
+
def refresh_refiner_model(name):
|
50 |
+
global xl_refiner, xl_refiner_hash
|
51 |
+
if xl_refiner_hash == str(name):
|
52 |
+
return
|
53 |
+
|
54 |
+
if name == 'None':
|
55 |
+
xl_refiner = None
|
56 |
+
xl_refiner_hash = ''
|
57 |
+
print(f'Refiner unloaded.')
|
58 |
+
return
|
59 |
+
|
60 |
+
filename = os.path.join(modules.path.modelfile_path, name)
|
61 |
+
|
62 |
+
if xl_refiner is not None:
|
63 |
+
xl_refiner.to_meta()
|
64 |
+
xl_refiner = None
|
65 |
+
|
66 |
+
xl_refiner = core.load_model(filename)
|
67 |
+
if not isinstance(xl_refiner.unet.model, SDXLRefiner):
|
68 |
+
print('Model not supported. Fooocus only support SDXL refiner as the refiner.')
|
69 |
+
xl_refiner = None
|
70 |
+
xl_refiner_hash = ''
|
71 |
+
print(f'Refiner unloaded.')
|
72 |
+
return
|
73 |
+
|
74 |
+
xl_refiner_hash = name
|
75 |
+
print(f'Refiner model loaded: {xl_refiner_hash}')
|
76 |
+
|
77 |
+
xl_refiner.vae.first_stage_model.to('meta')
|
78 |
+
xl_refiner.vae = None
|
79 |
+
return
|
80 |
+
|
81 |
+
|
82 |
+
def refresh_loras(loras):
|
83 |
+
global xl_base, xl_base_patched, xl_base_patched_hash
|
84 |
+
if xl_base_patched_hash == str(loras):
|
85 |
+
return
|
86 |
+
|
87 |
+
model = xl_base
|
88 |
+
for name, weight in loras:
|
89 |
+
if name == 'None':
|
90 |
+
continue
|
91 |
+
|
92 |
+
filename = os.path.join(modules.path.lorafile_path, name)
|
93 |
+
model = core.load_lora(model, filename, strength_model=weight, strength_clip=weight)
|
94 |
+
xl_base_patched = model
|
95 |
+
xl_base_patched_hash = str(loras)
|
96 |
+
print(f'LoRAs loaded: {xl_base_patched_hash}')
|
97 |
+
|
98 |
+
return
|
99 |
+
|
100 |
+
|
101 |
+
refresh_base_model(modules.path.default_base_model_name)
|
102 |
+
refresh_refiner_model(modules.path.default_refiner_model_name)
|
103 |
+
refresh_loras([(modules.path.default_lora_name, 0.5), ('None', 0.5), ('None', 0.5), ('None', 0.5), ('None', 0.5)])
|
104 |
|
105 |
|
106 |
@torch.no_grad()
|
107 |
def process(positive_prompt, negative_prompt, steps, switch, width, height, image_seed, callback):
|
108 |
+
positive_conditions = core.encode_prompt_condition(clip=xl_base_patched.clip, prompt=positive_prompt)
|
109 |
+
negative_conditions = core.encode_prompt_condition(clip=xl_base_patched.clip, prompt=negative_prompt)
|
|
|
|
|
|
|
110 |
|
111 |
empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=1)
|
112 |
|
113 |
+
if xl_refiner is not None:
|
114 |
+
|
115 |
+
positive_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=positive_prompt)
|
116 |
+
negative_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=negative_prompt)
|
117 |
+
|
118 |
+
sampled_latent = core.ksampler_with_refiner(
|
119 |
+
model=xl_base_patched.unet,
|
120 |
+
positive=positive_conditions,
|
121 |
+
negative=negative_conditions,
|
122 |
+
refiner=xl_refiner.unet,
|
123 |
+
refiner_positive=positive_conditions_refiner,
|
124 |
+
refiner_negative=negative_conditions_refiner,
|
125 |
+
refiner_switch_step=switch,
|
126 |
+
latent=empty_latent,
|
127 |
+
steps=steps, start_step=0, last_step=steps, disable_noise=False, force_full_denoise=True,
|
128 |
+
seed=image_seed,
|
129 |
+
callback_function=callback
|
130 |
+
)
|
131 |
+
|
132 |
+
else:
|
133 |
+
sampled_latent = core.ksampler(
|
134 |
+
model=xl_base_patched.unet,
|
135 |
+
positive=positive_conditions,
|
136 |
+
negative=negative_conditions,
|
137 |
+
latent=empty_latent,
|
138 |
+
steps=steps, start_step=0, last_step=steps, disable_noise=False, force_full_denoise=True,
|
139 |
+
seed=image_seed,
|
140 |
+
callback_function=callback
|
141 |
+
)
|
142 |
+
|
143 |
+
decoded_latent = core.decode_vae(vae=xl_base_patched.vae, latent_image=sampled_latent)
|
144 |
|
145 |
images = core.image_to_numpy(decoded_latent)
|
146 |
|
modules/path.py
CHANGED
@@ -5,3 +5,35 @@ lorafile_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '../mode
|
|
5 |
temp_outputs_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '../outputs/'))
|
6 |
|
7 |
os.makedirs(temp_outputs_path, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
temp_outputs_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '../outputs/'))
|
6 |
|
7 |
os.makedirs(temp_outputs_path, exist_ok=True)
|
8 |
+
|
9 |
+
default_base_model_name = 'sd_xl_base_1.0_0.9vae.safetensors'
|
10 |
+
default_refiner_model_name = 'sd_xl_refiner_1.0_0.9vae.safetensors'
|
11 |
+
default_lora_name = 'sd_xl_offset_example-lora_1.0.safetensors'
|
12 |
+
default_lora_weight = 0.5
|
13 |
+
|
14 |
+
model_filenames = []
|
15 |
+
lora_filenames = []
|
16 |
+
|
17 |
+
|
18 |
+
def get_model_filenames(folder_path):
|
19 |
+
if not os.path.isdir(folder_path):
|
20 |
+
raise ValueError("Folder path is not a valid directory.")
|
21 |
+
|
22 |
+
filenames = []
|
23 |
+
for filename in os.listdir(folder_path):
|
24 |
+
if os.path.isfile(os.path.join(folder_path, filename)):
|
25 |
+
_, file_extension = os.path.splitext(filename)
|
26 |
+
if file_extension.lower() in ['.pth', '.ckpt', '.bin', '.safetensors']:
|
27 |
+
filenames.append(filename)
|
28 |
+
|
29 |
+
return filenames
|
30 |
+
|
31 |
+
|
32 |
+
def update_all_model_names():
|
33 |
+
global model_filenames, lora_filenames
|
34 |
+
model_filenames = get_model_filenames(modelfile_path)
|
35 |
+
lora_filenames = get_model_filenames(lorafile_path)
|
36 |
+
return
|
37 |
+
|
38 |
+
|
39 |
+
update_all_model_names()
|
modules/sdxl_styles.py
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
|
3 |
styles = [
|
4 |
{
|
5 |
-
"name": "
|
6 |
"prompt": "{prompt}",
|
7 |
"negative_prompt": ""
|
8 |
},
|
@@ -529,7 +529,7 @@ styles = [
|
|
529 |
]
|
530 |
|
531 |
styles = {k['name']: (k['prompt'], k['negative_prompt']) for k in styles}
|
532 |
-
default_style = styles['
|
533 |
style_keys = list(styles.keys())
|
534 |
|
535 |
|
|
|
2 |
|
3 |
styles = [
|
4 |
{
|
5 |
+
"name": "None",
|
6 |
"prompt": "{prompt}",
|
7 |
"negative_prompt": ""
|
8 |
},
|
|
|
529 |
]
|
530 |
|
531 |
styles = {k['name']: (k['prompt'], k['negative_prompt']) for k in styles}
|
532 |
+
default_style = styles['None']
|
533 |
style_keys = list(styles.keys())
|
534 |
|
535 |
|
update_log.md
CHANGED
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
1 |
### 1.0.17
|
2 |
|
3 |
* Change default model to SDXL-1.0-vae-0.9. (This means the models will be downloaded again, but we should do it as early as possible so that all new users only need to download once. Really sorry for day-0 users. But frankly this is not too late considering that the project is just publicly available in less than 24 hours - if it has been a week then we will prefer more lightweight tricks to update.)
|
|
|
1 |
+
### 1.0.19
|
2 |
+
|
3 |
+
* Unlock to allow changing model.
|
4 |
+
|
5 |
### 1.0.17
|
6 |
|
7 |
* Change default model to SDXL-1.0-vae-0.9. (This means the models will be downloaded again, but we should do it as early as possible so that all new users only need to download once. Really sorry for day-0 users. But frankly this is not too late considering that the project is just publicly available in less than 24 hours - if it has been a week then we will prefer more lightweight tricks to update.)
|
webui.py
CHANGED
@@ -1,16 +1,23 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import random
|
3 |
import fooocus_version
|
|
|
4 |
|
5 |
from modules.sdxl_styles import apply_style, style_keys, aspect_ratios
|
6 |
-
from modules.default_pipeline import process
|
7 |
from modules.cv2win32 import close_all_preview, save_image
|
8 |
from modules.util import generate_temp_filename
|
9 |
-
from modules.path import temp_outputs_path
|
10 |
|
11 |
|
12 |
def generate_clicked(prompt, negative_prompt, style_selction, performance_selction,
|
13 |
-
aspect_ratios_selction, image_number, image_seed,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
p_txt, n_txt = apply_style(style_selction, prompt, negative_prompt)
|
16 |
|
@@ -35,10 +42,10 @@ def generate_clicked(prompt, negative_prompt, style_selction, performance_selcti
|
|
35 |
progress(float(done_steps) / float(all_steps), f'Step {step}/{total_steps} in the {i}-th Sampling')
|
36 |
|
37 |
for i in range(image_number):
|
38 |
-
imgs = process(p_txt, n_txt, steps, switch, width, height, seed, callback=callback)
|
39 |
|
40 |
for x in imgs:
|
41 |
-
local_temp_filename = generate_temp_filename(folder=temp_outputs_path, extension='png')
|
42 |
save_image(local_temp_filename, x)
|
43 |
|
44 |
seed += 1
|
@@ -61,21 +68,45 @@ with block:
|
|
61 |
with gr.Row():
|
62 |
advanced_checkbox = gr.Checkbox(label='Advanced', value=False, container=False)
|
63 |
with gr.Column(scale=0.5, visible=False) as right_col:
|
64 |
-
with gr.Tab(label='
|
65 |
performance_selction = gr.Radio(label='Performance', choices=['Speed', 'Quality'], value='Speed')
|
66 |
aspect_ratios_selction = gr.Radio(label='Aspect Ratios (width × height)', choices=list(aspect_ratios.keys()),
|
67 |
value='1152×896')
|
68 |
image_number = gr.Slider(label='Image Number', minimum=1, maximum=32, step=1, value=2)
|
69 |
image_seed = gr.Number(label='Random Seed', value=-1, precision=0)
|
70 |
negative_prompt = gr.Textbox(label='Negative Prompt', show_label=True, placeholder="Type prompt here.")
|
71 |
-
with gr.Tab(label='
|
72 |
style_selction = gr.Radio(show_label=False, container=True,
|
73 |
choices=style_keys, value='cinematic-default')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
advanced_checkbox.change(lambda x: gr.update(visible=x), advanced_checkbox, right_col)
|
75 |
ctrls = [
|
76 |
prompt, negative_prompt, style_selction,
|
77 |
performance_selction, aspect_ratios_selction, image_number, image_seed
|
78 |
]
|
|
|
79 |
run_button.click(fn=generate_clicked, inputs=ctrls, outputs=[gallery])
|
80 |
|
81 |
block.launch(inbrowser=True)
|
|
|
1 |
import gradio as gr
|
2 |
+
import modules.path
|
3 |
import random
|
4 |
import fooocus_version
|
5 |
+
import modules.default_pipeline as pipeline
|
6 |
|
7 |
from modules.sdxl_styles import apply_style, style_keys, aspect_ratios
|
|
|
8 |
from modules.cv2win32 import close_all_preview, save_image
|
9 |
from modules.util import generate_temp_filename
|
|
|
10 |
|
11 |
|
12 |
def generate_clicked(prompt, negative_prompt, style_selction, performance_selction,
|
13 |
+
aspect_ratios_selction, image_number, image_seed, base_model_name, refiner_model_name,
|
14 |
+
l1, w1, l2, w2, l3, w3, l4, w4, l5, w5, progress=gr.Progress()):
|
15 |
+
|
16 |
+
loras = [(l1, w1), (l2, w2), (l3, w3), (l4, w4), (l5, w5)]
|
17 |
+
|
18 |
+
pipeline.refresh_base_model(base_model_name)
|
19 |
+
pipeline.refresh_refiner_model(refiner_model_name)
|
20 |
+
pipeline.refresh_loras(loras)
|
21 |
|
22 |
p_txt, n_txt = apply_style(style_selction, prompt, negative_prompt)
|
23 |
|
|
|
42 |
progress(float(done_steps) / float(all_steps), f'Step {step}/{total_steps} in the {i}-th Sampling')
|
43 |
|
44 |
for i in range(image_number):
|
45 |
+
imgs = pipeline.process(p_txt, n_txt, steps, switch, width, height, seed, callback=callback)
|
46 |
|
47 |
for x in imgs:
|
48 |
+
local_temp_filename = generate_temp_filename(folder=modules.path.temp_outputs_path, extension='png')
|
49 |
save_image(local_temp_filename, x)
|
50 |
|
51 |
seed += 1
|
|
|
68 |
with gr.Row():
|
69 |
advanced_checkbox = gr.Checkbox(label='Advanced', value=False, container=False)
|
70 |
with gr.Column(scale=0.5, visible=False) as right_col:
|
71 |
+
with gr.Tab(label='Setting'):
|
72 |
performance_selction = gr.Radio(label='Performance', choices=['Speed', 'Quality'], value='Speed')
|
73 |
aspect_ratios_selction = gr.Radio(label='Aspect Ratios (width × height)', choices=list(aspect_ratios.keys()),
|
74 |
value='1152×896')
|
75 |
image_number = gr.Slider(label='Image Number', minimum=1, maximum=32, step=1, value=2)
|
76 |
image_seed = gr.Number(label='Random Seed', value=-1, precision=0)
|
77 |
negative_prompt = gr.Textbox(label='Negative Prompt', show_label=True, placeholder="Type prompt here.")
|
78 |
+
with gr.Tab(label='Style'):
|
79 |
style_selction = gr.Radio(show_label=False, container=True,
|
80 |
choices=style_keys, value='cinematic-default')
|
81 |
+
with gr.Tab(label='Advanced'):
|
82 |
+
with gr.Row():
|
83 |
+
base_model = gr.Dropdown(label='SDXL Base Model', choices=modules.path.model_filenames, value=modules.path.default_base_model_name, show_label=True)
|
84 |
+
refiner_model = gr.Dropdown(label='SDXL Refiner', choices=['None'] + modules.path.model_filenames, value=modules.path.default_refiner_model_name, show_label=True)
|
85 |
+
with gr.Accordion(label='LoRAs', open=True):
|
86 |
+
lora_ctrls = []
|
87 |
+
for i in range(5):
|
88 |
+
with gr.Row():
|
89 |
+
lora_model = gr.Dropdown(label=f'SDXL LoRA {i+1}', choices=['None'] + modules.path.lora_filenames, value=modules.path.default_lora_name if i == 0 else 'None')
|
90 |
+
lora_weight = gr.Slider(label='Weight', minimum=-2, maximum=2, step=0.01, value=modules.path.default_lora_weight)
|
91 |
+
lora_ctrls += [lora_model, lora_weight]
|
92 |
+
model_refresh = gr.Button(label='Refresh', value='Refresh All Files', variant='secondary')
|
93 |
+
|
94 |
+
def model_refresh_clicked():
|
95 |
+
modules.path.update_all_model_names()
|
96 |
+
results = []
|
97 |
+
results += [gr.update(choices=modules.path.model_filenames), gr.update(choices=['None'] + modules.path.model_filenames)]
|
98 |
+
for i in range(5):
|
99 |
+
results += [gr.update(choices=['None'] + modules.path.lora_filenames), gr.update()]
|
100 |
+
return results
|
101 |
+
|
102 |
+
model_refresh.click(model_refresh_clicked, [], [base_model, refiner_model] + lora_ctrls)
|
103 |
+
|
104 |
advanced_checkbox.change(lambda x: gr.update(visible=x), advanced_checkbox, right_col)
|
105 |
ctrls = [
|
106 |
prompt, negative_prompt, style_selction,
|
107 |
performance_selction, aspect_ratios_selction, image_number, image_seed
|
108 |
]
|
109 |
+
ctrls += [base_model, refiner_model] + lora_ctrls
|
110 |
run_button.click(fn=generate_clicked, inputs=ctrls, outputs=[gallery])
|
111 |
|
112 |
block.launch(inbrowser=True)
|