lllyasviel commited on
Commit
edc0c71
·
1 Parent(s): 3d00867
Files changed (2) hide show
  1. .gitignore +1 -0
  2. modules/core.py +33 -7
.gitignore CHANGED
@@ -2,6 +2,7 @@ __pycache__
2
  *.ckpt
3
  *.safetensors
4
  *.pth
 
5
  /repositories
6
  /venv
7
  /tmp
 
2
  *.ckpt
3
  *.safetensors
4
  *.pth
5
+ !taesdxl_decoder.pth
6
  /repositories
7
  /venv
8
  /tmp
modules/core.py CHANGED
@@ -1,14 +1,16 @@
 
1
  import random
 
 
2
  import torch
3
  import numpy as np
4
 
5
  import comfy.model_management
6
  import comfy.sample
7
  import comfy.utils
8
- import latent_preview
9
 
10
  from comfy.sd import load_checkpoint_guess_config
11
- from nodes import VAEDecode, EmptyLatentImage, CLIPTextEncode, common_ksampler
12
 
13
 
14
  opCLIPTextEncode = CLIPTextEncode()
@@ -45,6 +47,20 @@ def decode_vae(vae, latent_image):
45
  return opVAEDecode.decode(samples=latent_image, vae=vae)[0]
46
 
47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  @torch.no_grad()
49
  def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=9.0, sampler_name='euler_ancestral', scheduler='normal', denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
50
  seed = seed if isinstance(seed, int) else random.randint(1, 2 ** 64)
@@ -66,21 +82,31 @@ def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=9.0, sa
66
  if preview_format not in ["JPEG", "PNG"]:
67
  preview_format = "JPEG"
68
 
69
- previewer = latent_preview.get_previewer(device, model.model.latent_format)
70
 
71
  pbar = comfy.utils.ProgressBar(steps)
72
 
73
  def callback(step, x0, x, total_steps):
74
- preview_bytes = None
75
- if previewer:
76
- preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
77
- pbar.update_absolute(step + 1, total_steps, preview_bytes)
 
 
 
 
 
 
78
 
79
  samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
80
  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
81
  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, seed=seed)
82
  out = latent.copy()
83
  out["samples"] = samples
 
 
 
 
84
  return out
85
 
86
 
 
1
+ import os
2
  import random
3
+ import cv2
4
+ import einops
5
  import torch
6
  import numpy as np
7
 
8
  import comfy.model_management
9
  import comfy.sample
10
  import comfy.utils
 
11
 
12
  from comfy.sd import load_checkpoint_guess_config
13
+ from nodes import VAEDecode, EmptyLatentImage, CLIPTextEncode
14
 
15
 
16
  opCLIPTextEncode = CLIPTextEncode()
 
47
  return opVAEDecode.decode(samples=latent_image, vae=vae)[0]
48
 
49
 
50
+ def get_previewer(device, latent_format):
51
+ from latent_preview import TAESD, TAESDPreviewerImpl
52
+ taesd_decoder_path = os.path.abspath(os.path.realpath(os.path.join("models", "vae_approx",
53
+ latent_format.taesd_decoder_name)))
54
+
55
+ if not os.path.exists(taesd_decoder_path):
56
+ print(f"Warning: TAESD previews enabled, but could not find {taesd_decoder_path}")
57
+ return None
58
+
59
+ taesd = TAESD(None, taesd_decoder_path).to(device)
60
+
61
+ return taesd
62
+
63
+
64
  @torch.no_grad()
65
  def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=9.0, sampler_name='euler_ancestral', scheduler='normal', denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
66
  seed = seed if isinstance(seed, int) else random.randint(1, 2 ** 64)
 
82
  if preview_format not in ["JPEG", "PNG"]:
83
  preview_format = "JPEG"
84
 
85
+ previewer = get_previewer(device, model.model.latent_format)
86
 
87
  pbar = comfy.utils.ProgressBar(steps)
88
 
89
  def callback(step, x0, x, total_steps):
90
+ if previewer and step % 3 == 0:
91
+ with torch.no_grad():
92
+ x_sample = previewer.decoder(x0).detach() * 255.0
93
+ x_sample = einops.rearrange(x_sample, 'b c h w -> b h w c')
94
+ x_sample = x_sample.cpu().numpy()[..., ::-1].copy().clip(0, 255).astype(np.uint8)
95
+
96
+ for i, s in enumerate(x_sample):
97
+ cv2.imshow(f'Preview {i}', s)
98
+ cv2.waitKey(1)
99
+ pbar.update_absolute(step + 1, total_steps, None)
100
 
101
  samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
102
  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
103
  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, seed=seed)
104
  out = latent.copy()
105
  out["samples"] = samples
106
+
107
+ if previewer:
108
+ cv2.destroyAllWindows()
109
+
110
  return out
111
 
112