lllyasviel commited on
Commit
ffcc874
·
1 Parent(s): 4ae54b7
.gitignore CHANGED
@@ -5,8 +5,6 @@ __pycache__
5
  /repositories
6
  /venv
7
  /tmp
8
- /model.ckpt
9
- /models/*
10
  /ui-config.json
11
  /outputs
12
  /config.json
 
5
  /repositories
6
  /venv
7
  /tmp
 
 
8
  /ui-config.json
9
  /outputs
10
  /config.json
models/checkpoints/put_checkpoints_here ADDED
File without changes
models/clip/put_clip_or_text_encoder_models_here ADDED
File without changes
models/clip_vision/put_clip_vision_models_here ADDED
File without changes
models/configs/anything_v3.yaml ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ use_ema: False
19
+
20
+ scheduler_config: # 10000 warmup steps
21
+ target: ldm.lr_scheduler.LambdaLinearScheduler
22
+ params:
23
+ warm_up_steps: [ 10000 ]
24
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
25
+ f_start: [ 1.e-6 ]
26
+ f_max: [ 1. ]
27
+ f_min: [ 1. ]
28
+
29
+ unet_config:
30
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
31
+ params:
32
+ image_size: 32 # unused
33
+ in_channels: 4
34
+ out_channels: 4
35
+ model_channels: 320
36
+ attention_resolutions: [ 4, 2, 1 ]
37
+ num_res_blocks: 2
38
+ channel_mult: [ 1, 2, 4, 4 ]
39
+ num_heads: 8
40
+ use_spatial_transformer: True
41
+ transformer_depth: 1
42
+ context_dim: 768
43
+ use_checkpoint: True
44
+ legacy: False
45
+
46
+ first_stage_config:
47
+ target: ldm.models.autoencoder.AutoencoderKL
48
+ params:
49
+ embed_dim: 4
50
+ monitor: val/rec_loss
51
+ ddconfig:
52
+ double_z: true
53
+ z_channels: 4
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult:
59
+ - 1
60
+ - 2
61
+ - 4
62
+ - 4
63
+ num_res_blocks: 2
64
+ attn_resolutions: []
65
+ dropout: 0.0
66
+ lossconfig:
67
+ target: torch.nn.Identity
68
+
69
+ cond_stage_config:
70
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
71
+ params:
72
+ layer: "hidden"
73
+ layer_idx: -2
models/configs/v1-inference.yaml ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ use_ema: False
19
+
20
+ scheduler_config: # 10000 warmup steps
21
+ target: ldm.lr_scheduler.LambdaLinearScheduler
22
+ params:
23
+ warm_up_steps: [ 10000 ]
24
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
25
+ f_start: [ 1.e-6 ]
26
+ f_max: [ 1. ]
27
+ f_min: [ 1. ]
28
+
29
+ unet_config:
30
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
31
+ params:
32
+ image_size: 32 # unused
33
+ in_channels: 4
34
+ out_channels: 4
35
+ model_channels: 320
36
+ attention_resolutions: [ 4, 2, 1 ]
37
+ num_res_blocks: 2
38
+ channel_mult: [ 1, 2, 4, 4 ]
39
+ num_heads: 8
40
+ use_spatial_transformer: True
41
+ transformer_depth: 1
42
+ context_dim: 768
43
+ use_checkpoint: True
44
+ legacy: False
45
+
46
+ first_stage_config:
47
+ target: ldm.models.autoencoder.AutoencoderKL
48
+ params:
49
+ embed_dim: 4
50
+ monitor: val/rec_loss
51
+ ddconfig:
52
+ double_z: true
53
+ z_channels: 4
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult:
59
+ - 1
60
+ - 2
61
+ - 4
62
+ - 4
63
+ num_res_blocks: 2
64
+ attn_resolutions: []
65
+ dropout: 0.0
66
+ lossconfig:
67
+ target: torch.nn.Identity
68
+
69
+ cond_stage_config:
70
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
models/configs/v1-inference_clip_skip_2.yaml ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ use_ema: False
19
+
20
+ scheduler_config: # 10000 warmup steps
21
+ target: ldm.lr_scheduler.LambdaLinearScheduler
22
+ params:
23
+ warm_up_steps: [ 10000 ]
24
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
25
+ f_start: [ 1.e-6 ]
26
+ f_max: [ 1. ]
27
+ f_min: [ 1. ]
28
+
29
+ unet_config:
30
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
31
+ params:
32
+ image_size: 32 # unused
33
+ in_channels: 4
34
+ out_channels: 4
35
+ model_channels: 320
36
+ attention_resolutions: [ 4, 2, 1 ]
37
+ num_res_blocks: 2
38
+ channel_mult: [ 1, 2, 4, 4 ]
39
+ num_heads: 8
40
+ use_spatial_transformer: True
41
+ transformer_depth: 1
42
+ context_dim: 768
43
+ use_checkpoint: True
44
+ legacy: False
45
+
46
+ first_stage_config:
47
+ target: ldm.models.autoencoder.AutoencoderKL
48
+ params:
49
+ embed_dim: 4
50
+ monitor: val/rec_loss
51
+ ddconfig:
52
+ double_z: true
53
+ z_channels: 4
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult:
59
+ - 1
60
+ - 2
61
+ - 4
62
+ - 4
63
+ num_res_blocks: 2
64
+ attn_resolutions: []
65
+ dropout: 0.0
66
+ lossconfig:
67
+ target: torch.nn.Identity
68
+
69
+ cond_stage_config:
70
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
71
+ params:
72
+ layer: "hidden"
73
+ layer_idx: -2
models/configs/v1-inference_clip_skip_2_fp16.yaml ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ use_ema: False
19
+
20
+ scheduler_config: # 10000 warmup steps
21
+ target: ldm.lr_scheduler.LambdaLinearScheduler
22
+ params:
23
+ warm_up_steps: [ 10000 ]
24
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
25
+ f_start: [ 1.e-6 ]
26
+ f_max: [ 1. ]
27
+ f_min: [ 1. ]
28
+
29
+ unet_config:
30
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
31
+ params:
32
+ use_fp16: True
33
+ image_size: 32 # unused
34
+ in_channels: 4
35
+ out_channels: 4
36
+ model_channels: 320
37
+ attention_resolutions: [ 4, 2, 1 ]
38
+ num_res_blocks: 2
39
+ channel_mult: [ 1, 2, 4, 4 ]
40
+ num_heads: 8
41
+ use_spatial_transformer: True
42
+ transformer_depth: 1
43
+ context_dim: 768
44
+ use_checkpoint: True
45
+ legacy: False
46
+
47
+ first_stage_config:
48
+ target: ldm.models.autoencoder.AutoencoderKL
49
+ params:
50
+ embed_dim: 4
51
+ monitor: val/rec_loss
52
+ ddconfig:
53
+ double_z: true
54
+ z_channels: 4
55
+ resolution: 256
56
+ in_channels: 3
57
+ out_ch: 3
58
+ ch: 128
59
+ ch_mult:
60
+ - 1
61
+ - 2
62
+ - 4
63
+ - 4
64
+ num_res_blocks: 2
65
+ attn_resolutions: []
66
+ dropout: 0.0
67
+ lossconfig:
68
+ target: torch.nn.Identity
69
+
70
+ cond_stage_config:
71
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
72
+ params:
73
+ layer: "hidden"
74
+ layer_idx: -2
models/configs/v1-inference_fp16.yaml ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ use_ema: False
19
+
20
+ scheduler_config: # 10000 warmup steps
21
+ target: ldm.lr_scheduler.LambdaLinearScheduler
22
+ params:
23
+ warm_up_steps: [ 10000 ]
24
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
25
+ f_start: [ 1.e-6 ]
26
+ f_max: [ 1. ]
27
+ f_min: [ 1. ]
28
+
29
+ unet_config:
30
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
31
+ params:
32
+ use_fp16: True
33
+ image_size: 32 # unused
34
+ in_channels: 4
35
+ out_channels: 4
36
+ model_channels: 320
37
+ attention_resolutions: [ 4, 2, 1 ]
38
+ num_res_blocks: 2
39
+ channel_mult: [ 1, 2, 4, 4 ]
40
+ num_heads: 8
41
+ use_spatial_transformer: True
42
+ transformer_depth: 1
43
+ context_dim: 768
44
+ use_checkpoint: True
45
+ legacy: False
46
+
47
+ first_stage_config:
48
+ target: ldm.models.autoencoder.AutoencoderKL
49
+ params:
50
+ embed_dim: 4
51
+ monitor: val/rec_loss
52
+ ddconfig:
53
+ double_z: true
54
+ z_channels: 4
55
+ resolution: 256
56
+ in_channels: 3
57
+ out_ch: 3
58
+ ch: 128
59
+ ch_mult:
60
+ - 1
61
+ - 2
62
+ - 4
63
+ - 4
64
+ num_res_blocks: 2
65
+ attn_resolutions: []
66
+ dropout: 0.0
67
+ lossconfig:
68
+ target: torch.nn.Identity
69
+
70
+ cond_stage_config:
71
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
models/configs/v1-inpainting-inference.yaml ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 7.5e-05
3
+ target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: hybrid # important
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ finetune_keys: null
19
+
20
+ scheduler_config: # 10000 warmup steps
21
+ target: ldm.lr_scheduler.LambdaLinearScheduler
22
+ params:
23
+ warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
24
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
25
+ f_start: [ 1.e-6 ]
26
+ f_max: [ 1. ]
27
+ f_min: [ 1. ]
28
+
29
+ unet_config:
30
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
31
+ params:
32
+ image_size: 32 # unused
33
+ in_channels: 9 # 4 data + 4 downscaled image + 1 mask
34
+ out_channels: 4
35
+ model_channels: 320
36
+ attention_resolutions: [ 4, 2, 1 ]
37
+ num_res_blocks: 2
38
+ channel_mult: [ 1, 2, 4, 4 ]
39
+ num_heads: 8
40
+ use_spatial_transformer: True
41
+ transformer_depth: 1
42
+ context_dim: 768
43
+ use_checkpoint: True
44
+ legacy: False
45
+
46
+ first_stage_config:
47
+ target: ldm.models.autoencoder.AutoencoderKL
48
+ params:
49
+ embed_dim: 4
50
+ monitor: val/rec_loss
51
+ ddconfig:
52
+ double_z: true
53
+ z_channels: 4
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult:
59
+ - 1
60
+ - 2
61
+ - 4
62
+ - 4
63
+ num_res_blocks: 2
64
+ attn_resolutions: []
65
+ dropout: 0.0
66
+ lossconfig:
67
+ target: torch.nn.Identity
68
+
69
+ cond_stage_config:
70
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
71
+
models/configs/v2-inference-v.yaml ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-4
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ parameterization: "v"
6
+ linear_start: 0.00085
7
+ linear_end: 0.0120
8
+ num_timesteps_cond: 1
9
+ log_every_t: 200
10
+ timesteps: 1000
11
+ first_stage_key: "jpg"
12
+ cond_stage_key: "txt"
13
+ image_size: 64
14
+ channels: 4
15
+ cond_stage_trainable: false
16
+ conditioning_key: crossattn
17
+ monitor: val/loss_simple_ema
18
+ scale_factor: 0.18215
19
+ use_ema: False # we set this to false because this is an inference only config
20
+
21
+ unet_config:
22
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
23
+ params:
24
+ use_checkpoint: True
25
+ use_fp16: True
26
+ image_size: 32 # unused
27
+ in_channels: 4
28
+ out_channels: 4
29
+ model_channels: 320
30
+ attention_resolutions: [ 4, 2, 1 ]
31
+ num_res_blocks: 2
32
+ channel_mult: [ 1, 2, 4, 4 ]
33
+ num_head_channels: 64 # need to fix for flash-attn
34
+ use_spatial_transformer: True
35
+ use_linear_in_transformer: True
36
+ transformer_depth: 1
37
+ context_dim: 1024
38
+ legacy: False
39
+
40
+ first_stage_config:
41
+ target: ldm.models.autoencoder.AutoencoderKL
42
+ params:
43
+ embed_dim: 4
44
+ monitor: val/rec_loss
45
+ ddconfig:
46
+ #attn_type: "vanilla-xformers"
47
+ double_z: true
48
+ z_channels: 4
49
+ resolution: 256
50
+ in_channels: 3
51
+ out_ch: 3
52
+ ch: 128
53
+ ch_mult:
54
+ - 1
55
+ - 2
56
+ - 4
57
+ - 4
58
+ num_res_blocks: 2
59
+ attn_resolutions: []
60
+ dropout: 0.0
61
+ lossconfig:
62
+ target: torch.nn.Identity
63
+
64
+ cond_stage_config:
65
+ target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
66
+ params:
67
+ freeze: True
68
+ layer: "penultimate"
models/configs/v2-inference-v_fp32.yaml ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-4
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ parameterization: "v"
6
+ linear_start: 0.00085
7
+ linear_end: 0.0120
8
+ num_timesteps_cond: 1
9
+ log_every_t: 200
10
+ timesteps: 1000
11
+ first_stage_key: "jpg"
12
+ cond_stage_key: "txt"
13
+ image_size: 64
14
+ channels: 4
15
+ cond_stage_trainable: false
16
+ conditioning_key: crossattn
17
+ monitor: val/loss_simple_ema
18
+ scale_factor: 0.18215
19
+ use_ema: False # we set this to false because this is an inference only config
20
+
21
+ unet_config:
22
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
23
+ params:
24
+ use_checkpoint: True
25
+ use_fp16: False
26
+ image_size: 32 # unused
27
+ in_channels: 4
28
+ out_channels: 4
29
+ model_channels: 320
30
+ attention_resolutions: [ 4, 2, 1 ]
31
+ num_res_blocks: 2
32
+ channel_mult: [ 1, 2, 4, 4 ]
33
+ num_head_channels: 64 # need to fix for flash-attn
34
+ use_spatial_transformer: True
35
+ use_linear_in_transformer: True
36
+ transformer_depth: 1
37
+ context_dim: 1024
38
+ legacy: False
39
+
40
+ first_stage_config:
41
+ target: ldm.models.autoencoder.AutoencoderKL
42
+ params:
43
+ embed_dim: 4
44
+ monitor: val/rec_loss
45
+ ddconfig:
46
+ #attn_type: "vanilla-xformers"
47
+ double_z: true
48
+ z_channels: 4
49
+ resolution: 256
50
+ in_channels: 3
51
+ out_ch: 3
52
+ ch: 128
53
+ ch_mult:
54
+ - 1
55
+ - 2
56
+ - 4
57
+ - 4
58
+ num_res_blocks: 2
59
+ attn_resolutions: []
60
+ dropout: 0.0
61
+ lossconfig:
62
+ target: torch.nn.Identity
63
+
64
+ cond_stage_config:
65
+ target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
66
+ params:
67
+ freeze: True
68
+ layer: "penultimate"
models/configs/v2-inference.yaml ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-4
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ use_ema: False # we set this to false because this is an inference only config
19
+
20
+ unet_config:
21
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
22
+ params:
23
+ use_checkpoint: True
24
+ use_fp16: True
25
+ image_size: 32 # unused
26
+ in_channels: 4
27
+ out_channels: 4
28
+ model_channels: 320
29
+ attention_resolutions: [ 4, 2, 1 ]
30
+ num_res_blocks: 2
31
+ channel_mult: [ 1, 2, 4, 4 ]
32
+ num_head_channels: 64 # need to fix for flash-attn
33
+ use_spatial_transformer: True
34
+ use_linear_in_transformer: True
35
+ transformer_depth: 1
36
+ context_dim: 1024
37
+ legacy: False
38
+
39
+ first_stage_config:
40
+ target: ldm.models.autoencoder.AutoencoderKL
41
+ params:
42
+ embed_dim: 4
43
+ monitor: val/rec_loss
44
+ ddconfig:
45
+ #attn_type: "vanilla-xformers"
46
+ double_z: true
47
+ z_channels: 4
48
+ resolution: 256
49
+ in_channels: 3
50
+ out_ch: 3
51
+ ch: 128
52
+ ch_mult:
53
+ - 1
54
+ - 2
55
+ - 4
56
+ - 4
57
+ num_res_blocks: 2
58
+ attn_resolutions: []
59
+ dropout: 0.0
60
+ lossconfig:
61
+ target: torch.nn.Identity
62
+
63
+ cond_stage_config:
64
+ target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
65
+ params:
66
+ freeze: True
67
+ layer: "penultimate"
models/configs/v2-inference_fp32.yaml ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-4
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ use_ema: False # we set this to false because this is an inference only config
19
+
20
+ unet_config:
21
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
22
+ params:
23
+ use_checkpoint: True
24
+ use_fp16: False
25
+ image_size: 32 # unused
26
+ in_channels: 4
27
+ out_channels: 4
28
+ model_channels: 320
29
+ attention_resolutions: [ 4, 2, 1 ]
30
+ num_res_blocks: 2
31
+ channel_mult: [ 1, 2, 4, 4 ]
32
+ num_head_channels: 64 # need to fix for flash-attn
33
+ use_spatial_transformer: True
34
+ use_linear_in_transformer: True
35
+ transformer_depth: 1
36
+ context_dim: 1024
37
+ legacy: False
38
+
39
+ first_stage_config:
40
+ target: ldm.models.autoencoder.AutoencoderKL
41
+ params:
42
+ embed_dim: 4
43
+ monitor: val/rec_loss
44
+ ddconfig:
45
+ #attn_type: "vanilla-xformers"
46
+ double_z: true
47
+ z_channels: 4
48
+ resolution: 256
49
+ in_channels: 3
50
+ out_ch: 3
51
+ ch: 128
52
+ ch_mult:
53
+ - 1
54
+ - 2
55
+ - 4
56
+ - 4
57
+ num_res_blocks: 2
58
+ attn_resolutions: []
59
+ dropout: 0.0
60
+ lossconfig:
61
+ target: torch.nn.Identity
62
+
63
+ cond_stage_config:
64
+ target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
65
+ params:
66
+ freeze: True
67
+ layer: "penultimate"
models/configs/v2-inpainting-inference.yaml ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 5.0e-05
3
+ target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false
15
+ conditioning_key: hybrid
16
+ scale_factor: 0.18215
17
+ monitor: val/loss_simple_ema
18
+ finetune_keys: null
19
+ use_ema: False
20
+
21
+ unet_config:
22
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
23
+ params:
24
+ use_checkpoint: True
25
+ image_size: 32 # unused
26
+ in_channels: 9
27
+ out_channels: 4
28
+ model_channels: 320
29
+ attention_resolutions: [ 4, 2, 1 ]
30
+ num_res_blocks: 2
31
+ channel_mult: [ 1, 2, 4, 4 ]
32
+ num_head_channels: 64 # need to fix for flash-attn
33
+ use_spatial_transformer: True
34
+ use_linear_in_transformer: True
35
+ transformer_depth: 1
36
+ context_dim: 1024
37
+ legacy: False
38
+
39
+ first_stage_config:
40
+ target: ldm.models.autoencoder.AutoencoderKL
41
+ params:
42
+ embed_dim: 4
43
+ monitor: val/rec_loss
44
+ ddconfig:
45
+ #attn_type: "vanilla-xformers"
46
+ double_z: true
47
+ z_channels: 4
48
+ resolution: 256
49
+ in_channels: 3
50
+ out_ch: 3
51
+ ch: 128
52
+ ch_mult:
53
+ - 1
54
+ - 2
55
+ - 4
56
+ - 4
57
+ num_res_blocks: 2
58
+ attn_resolutions: [ ]
59
+ dropout: 0.0
60
+ lossconfig:
61
+ target: torch.nn.Identity
62
+
63
+ cond_stage_config:
64
+ target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
65
+ params:
66
+ freeze: True
67
+ layer: "penultimate"
68
+
69
+
70
+ data:
71
+ target: ldm.data.laion.WebDataModuleFromConfig
72
+ params:
73
+ tar_base: null # for concat as in LAION-A
74
+ p_unsafe_threshold: 0.1
75
+ filter_word_list: "data/filters.yaml"
76
+ max_pwatermark: 0.45
77
+ batch_size: 8
78
+ num_workers: 6
79
+ multinode: True
80
+ min_size: 512
81
+ train:
82
+ shards:
83
+ - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-0/{00000..18699}.tar -"
84
+ - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-1/{00000..18699}.tar -"
85
+ - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-2/{00000..18699}.tar -"
86
+ - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-3/{00000..18699}.tar -"
87
+ - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-4/{00000..18699}.tar -" #{00000-94333}.tar"
88
+ shuffle: 10000
89
+ image_key: jpg
90
+ image_transforms:
91
+ - target: torchvision.transforms.Resize
92
+ params:
93
+ size: 512
94
+ interpolation: 3
95
+ - target: torchvision.transforms.RandomCrop
96
+ params:
97
+ size: 512
98
+ postprocess:
99
+ target: ldm.data.laion.AddMask
100
+ params:
101
+ mode: "512train-large"
102
+ p_drop: 0.25
103
+ # NOTE use enough shards to avoid empty validation loops in workers
104
+ validation:
105
+ shards:
106
+ - "pipe:aws s3 cp s3://deep-floyd-s3/datasets/laion_cleaned-part5/{93001..94333}.tar - "
107
+ shuffle: 0
108
+ image_key: jpg
109
+ image_transforms:
110
+ - target: torchvision.transforms.Resize
111
+ params:
112
+ size: 512
113
+ interpolation: 3
114
+ - target: torchvision.transforms.CenterCrop
115
+ params:
116
+ size: 512
117
+ postprocess:
118
+ target: ldm.data.laion.AddMask
119
+ params:
120
+ mode: "512train-large"
121
+ p_drop: 0.25
122
+
123
+ lightning:
124
+ find_unused_parameters: True
125
+ modelcheckpoint:
126
+ params:
127
+ every_n_train_steps: 5000
128
+
129
+ callbacks:
130
+ metrics_over_trainsteps_checkpoint:
131
+ params:
132
+ every_n_train_steps: 10000
133
+
134
+ image_logger:
135
+ target: main.ImageLogger
136
+ params:
137
+ enable_autocast: False
138
+ disabled: False
139
+ batch_frequency: 1000
140
+ max_images: 4
141
+ increase_log_steps: False
142
+ log_first_step: False
143
+ log_images_kwargs:
144
+ use_ema_scope: False
145
+ inpaint: False
146
+ plot_progressive_rows: False
147
+ plot_diffusion_rows: False
148
+ N: 4
149
+ unconditional_guidance_scale: 5.0
150
+ unconditional_guidance_label: [""]
151
+ ddim_steps: 50 # todo check these out for depth2img,
152
+ ddim_eta: 0.0 # todo check these out for depth2img,
153
+
154
+ trainer:
155
+ benchmark: True
156
+ val_check_interval: 5000000
157
+ num_sanity_val_steps: 0
158
+ accumulate_grad_batches: 1
models/controlnet/put_controlnets_and_t2i_here ADDED
File without changes
models/diffusers/put_diffusers_models_here ADDED
File without changes
models/embeddings/put_embeddings_or_textual_inversion_concepts_here ADDED
File without changes
models/gligen/put_gligen_models_here ADDED
File without changes
models/hypernetworks/put_hypernetworks_here ADDED
File without changes
models/loras/put_loras_here ADDED
File without changes
models/style_models/put_t2i_style_model_here ADDED
File without changes
models/unet/put_unet_files_here ADDED
File without changes
models/upscale_models/put_esrgan_and_other_upscale_models_here ADDED
File without changes
models/vae/put_vae_here ADDED
File without changes
models/vae_approx/put_taesd_encoder_pth_and_taesd_decoder_pth_here ADDED
File without changes
modules/{sd.py → core.py} RENAMED
@@ -31,13 +31,18 @@ def encode_prompt_condition(clip, prompt):
31
  return opCLIPTextEncode.encode(clip=clip, text=prompt)[0]
32
 
33
 
 
 
 
 
 
34
  @torch.no_grad()
35
  def decode_vae(vae, latent_image):
36
  return opVAEDecode.decode(samples=latent_image, vae=vae)[0]
37
 
38
 
39
  @torch.no_grad()
40
- def ksample(model, positive_condition, negative_condition, latent_image, add_noise=True, noise_seed=None, steps=25, cfg=9,
41
  sampler_name='euler_ancestral', scheduler='normal', start_at_step=None, end_at_step=None,
42
  return_with_leftover_noise=False):
43
  return opKSamplerAdvanced.sample(
@@ -50,7 +55,7 @@ def ksample(model, positive_condition, negative_condition, latent_image, add_noi
50
  start_at_step=0 if start_at_step is None else start_at_step,
51
  end_at_step=steps if end_at_step is None else end_at_step,
52
  return_with_leftover_noise='enable' if return_with_leftover_noise else 'disable',
53
- model=model,
54
  positive=positive_condition,
55
  negative=negative_condition,
56
  latent_image=latent_image,
 
31
  return opCLIPTextEncode.encode(clip=clip, text=prompt)[0]
32
 
33
 
34
+ @torch.no_grad()
35
+ def generate_empty_latent(width=1024, height=1024, batch_size=1):
36
+ return opEmptyLatentImage.generate(width=width, height=height, batch_size=batch_size)[0]
37
+
38
+
39
  @torch.no_grad()
40
  def decode_vae(vae, latent_image):
41
  return opVAEDecode.decode(samples=latent_image, vae=vae)[0]
42
 
43
 
44
  @torch.no_grad()
45
+ def ksample(unet, positive_condition, negative_condition, latent_image, add_noise=True, noise_seed=None, steps=25, cfg=9,
46
  sampler_name='euler_ancestral', scheduler='normal', start_at_step=None, end_at_step=None,
47
  return_with_leftover_noise=False):
48
  return opKSamplerAdvanced.sample(
 
55
  start_at_step=0 if start_at_step is None else start_at_step,
56
  end_at_step=steps if end_at_step is None else end_at_step,
57
  return_with_leftover_noise='enable' if return_with_leftover_noise else 'disable',
58
+ model=unet,
59
  positive=positive_condition,
60
  negative=negative_condition,
61
  latent_image=latent_image,
webui.py CHANGED
@@ -2,49 +2,32 @@ import os
2
  import random
3
  import torch
4
  import numpy as np
 
5
 
6
- from comfy.sd import load_checkpoint_guess_config
7
- from nodes import VAEDecode, KSamplerAdvanced, EmptyLatentImage, SaveImage, CLIPTextEncode
8
  from modules.path import modelfile_path
9
 
10
 
11
  xl_base_filename = os.path.join(modelfile_path, 'sd_xl_base_1.0.safetensors')
12
  xl_refiner_filename = os.path.join(modelfile_path, 'sd_xl_refiner_1.0.safetensors')
13
 
14
- xl_base, xl_base_clip, xl_base_vae, xl_base_clipvision = load_checkpoint_guess_config(xl_base_filename)
15
- del xl_base_clipvision
16
-
17
- opCLIPTextEncode = CLIPTextEncode()
18
- opEmptyLatentImage = EmptyLatentImage()
19
- opKSamplerAdvanced = KSamplerAdvanced()
20
- opVAEDecode = VAEDecode()
21
-
22
- with torch.no_grad():
23
- positive_conditions = opCLIPTextEncode.encode(clip=xl_base_clip, text='a handsome man in forest')[0]
24
- negative_conditions = opCLIPTextEncode.encode(clip=xl_base_clip, text='bad, ugly')[0]
25
-
26
- initial_latent_image = opEmptyLatentImage.generate(width=1024, height=1024, batch_size=1)[0]
27
-
28
- samples = opKSamplerAdvanced.sample(
29
- add_noise="enable",
30
- noise_seed=random.randint(1, 2 ** 64),
31
- steps=25,
32
- cfg=9,
33
- sampler_name="euler",
34
- scheduler="normal",
35
- start_at_step=0,
36
- end_at_step=25,
37
- return_with_leftover_noise="enable",
38
- model=xl_base,
39
- positive=positive_conditions,
40
- negative=negative_conditions,
41
- latent_image=initial_latent_image,
42
- )[0]
43
-
44
- vae_decoded = opVAEDecode.decode(samples=samples, vae=xl_base_vae)[0]
45
-
46
- for image in vae_decoded:
47
- i = 255. * image.cpu().numpy()
48
- img = np.clip(i, 0, 255).astype(np.uint8)
49
- import cv2
50
- cv2.imwrite('a.png', img[:, :, ::-1])
 
2
  import random
3
  import torch
4
  import numpy as np
5
+ import modules.core as core
6
 
 
 
7
  from modules.path import modelfile_path
8
 
9
 
10
  xl_base_filename = os.path.join(modelfile_path, 'sd_xl_base_1.0.safetensors')
11
  xl_refiner_filename = os.path.join(modelfile_path, 'sd_xl_refiner_1.0.safetensors')
12
 
13
+ xl_base = core.load_model(xl_base_filename)
14
+
15
+ positive_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt='a handsome man in forest')
16
+ negative_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt='bad, ugly')
17
+
18
+ empty_latent = core.generate_empty_latent(width=1024, height=1024, batch_size=1)
19
+
20
+ sampled_latent = core.ksample(
21
+ unet=xl_base.unet,
22
+ positive_condition=positive_conditions,
23
+ negative_condition=negative_conditions,
24
+ latent_image=empty_latent
25
+ )
26
+
27
+ decoded_latent = core.decode_vae(vae=xl_base.vae, latent_image=sampled_latent)
28
+
29
+ images = core.image_to_numpy(decoded_latent)
30
+
31
+ for image in images:
32
+ import cv2
33
+ cv2.imwrite('a.png', image[:, :, ::-1])