Spaces:
Running
Running
File size: 4,445 Bytes
6cc94b6 a99513a 6cc94b6 74aa7d2 6cc94b6 74aa7d2 6cc94b6 74aa7d2 b353329 6cc94b6 74aa7d2 a99513a 6cc94b6 74aa7d2 6cc94b6 74aa7d2 6cc94b6 8f2eed8 6cc94b6 74aa7d2 6cc94b6 74aa7d2 6cc94b6 74aa7d2 6cc94b6 74aa7d2 a99513a 6abb81d 8f2eed8 a99513a 8f2eed8 a99513a 74aa7d2 a99513a 74aa7d2 a99513a 74aa7d2 a99513a 74aa7d2 a99513a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import gradio as gr
import os
import tempfile
from pathlib import Path
import secrets
import dashscope
from dashscope import MultiModalConversation, Generation
from PIL import Image
# API key setup
YOUR_API_TOKEN = os.getenv('YOUR_API_TOKEN')
dashscope.api_key = YOUR_API_TOKEN
# Global variables
math_messages = []
image_descriptions = []
def process_image(image, shouldConvert=False):
uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(
Path(tempfile.gettempdir()) / "gradio"
)
os.makedirs(uploaded_file_dir, exist_ok=True)
name = f"tmp{secrets.token_hex(20)}.jpg"
filename = os.path.join(uploaded_file_dir, name)
if shouldConvert:
new_img = Image.new('RGB', size=(image.width, image.height), color=(255, 255, 255))
new_img.paste(image, (0, 0), mask=image)
image = new_img
image.save(filename)
messages = [{
'role': 'system',
'content': [{'text': 'You are a helpful assistant.'}]
}, {
'role': 'user',
'content': [
{'image': f'file://{filename}'},
{'text': 'Please describe the math-related content in this image, ensuring that any LaTeX formulas are correctly transcribed. Non-mathematical details do not need to be described.'}
]
}]
response = MultiModalConversation.call(model='qwen-vl-max-0809', messages=messages)
os.remove(filename)
return response.output.choices[0]["message"]["content"]
def get_math_response(image_descriptions, user_question):
global math_messages
if not math_messages:
math_messages.append({'role': 'system', 'content': 'You are a helpful math assistant.'})
content = "Image descriptions:\n" + "\n".join(image_descriptions) if image_descriptions else ""
content += f"\n\nUser question: {user_question}"
math_messages.append({'role': 'user', 'content': content})
response = Generation.call(
model="qwen2.5-math-72b-instruct",
messages=math_messages,
result_format='message',
stream=True
)
answer = ""
for resp in response:
if resp.output is None:
continue
answer = resp.output.choices[0].message.content
yield answer.replace("\\", "\\\\")
math_messages.append({'role': 'assistant', 'content': answer})
def math_chat_bot(images, sketchpad, question, chat_history):
global image_descriptions
# Process new images
for image in images:
if image:
description = process_image(image)
image_descriptions.append(description)
# Process sketchpad if present
if sketchpad and sketchpad["composite"]:
sketch_description = process_image(sketchpad["composite"], True)
image_descriptions.append(sketch_description)
# Generate response
response = ""
for chunk in get_math_response(image_descriptions, question):
response += chunk
yield chat_history + [(question, response)]
css = """
#qwen-md .katex-display { display: inline; }
#qwen-md .katex-display>.katex { display: inline; }
#qwen-md .katex-display>.katex>.katex-html { display: inline; }
"""
# Create Gradio interface
with gr.Blocks(css=css) as demo:
gr.HTML("""\
<p align="center"><img src="https://modelscope.oss-cn-beijing.aliyuncs.com/resource/qwen.png" style="height: 60px"/><p>"""
"""<center><font size=8>📖 Qwen2.5-Math Demo</center>"""
"""\
<center><font size=3>This WebUI is based on Qwen2-VL for OCR and Qwen2.5-Math for mathematical reasoning. You can input either images or texts of mathematical or arithmetic problems.</center>"""
)
with gr.Row():
with gr.Column():
input_images = gr.File(file_count="multiple", label="Upload Images")
input_sketchpad = gr.Sketchpad(type="pil", label="Sketch", layers=False)
input_text = gr.Textbox(label="Input your question")
with gr.Row():
clear_btn = gr.ClearButton([input_images, input_sketchpad, input_text])
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column():
chat_output = gr.Chatbot(label="Chat History", elem_id="qwen-md")
submit_btn.click(
fn=math_chat_bot,
inputs=[input_images, input_sketchpad, input_text, chat_output],
outputs=chat_output
)
demo.launch() |