File size: 19,034 Bytes
1427ef7
 
 
 
 
 
 
76934e1
 
 
 
 
 
 
 
1427ef7
76934e1
1427ef7
 
 
76934e1
 
 
1427ef7
76934e1
1427ef7
 
76934e1
1427ef7
76934e1
 
1427ef7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76934e1
 
1427ef7
76934e1
 
 
 
 
 
 
 
1427ef7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76934e1
1427ef7
76934e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1427ef7
76934e1
 
1427ef7
76934e1
 
1427ef7
 
 
 
 
 
 
 
 
 
 
 
 
 
76934e1
852ca96
1427ef7
 
 
76934e1
1427ef7
76934e1
 
 
 
1427ef7
76934e1
1427ef7
 
 
 
 
 
 
 
 
 
 
76934e1
 
 
 
 
 
1427ef7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76934e1
 
1427ef7
76934e1
1427ef7
76934e1
 
 
1427ef7
76934e1
 
 
 
 
 
 
 
 
1427ef7
76934e1
 
1427ef7
 
 
 
 
76934e1
 
 
 
 
 
1427ef7
76934e1
1427ef7
76934e1
1427ef7
76934e1
 
 
 
1427ef7
 
 
 
 
 
 
 
 
 
 
 
 
76934e1
1427ef7
76934e1
 
 
 
 
1427ef7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunClip). All Rights Reserved.
#  MIT License  (https://opensource.org/licenses/MIT)

import re
import os
import sys
import copy
import librosa
import logging
import argparse
import numpy as np
import soundfile as sf
from moviepy.editor import *
import moviepy.editor as mpy
from moviepy.video.tools.subtitles import SubtitlesClip
from utils.subtitle_utils import generate_srt, generate_srt_clip
from utils.argparse_tools import ArgumentParser, get_commandline_args
from utils.trans_utils import pre_proc, proc, write_state, load_state, proc_spk, convert_pcm_to_float


class VideoClipper():
    def __init__(self, funasr_model):
        logging.warning("Initializing VideoClipper.")
        self.funasr_model = funasr_model
        self.GLOBAL_COUNT = 0

    def recog(self, audio_input, sd_switch='no', state=None, hotwords="", output_dir=None):
        if state is None:
            state = {}
        sr, data = audio_input

        # Convert to float64 consistently (includes data type checking)
        data = convert_pcm_to_float(data)

        # assert sr == 16000, "16kHz sample rate required, {} given.".format(sr)
        if sr != 16000: # resample with librosa
            data = librosa.resample(data, orig_sr=sr, target_sr=16000)
        if len(data.shape) == 2:  # multi-channel wav input
            logging.warning("Input wav shape: {}, only first channel reserved.".format(data.shape))
            data = data[:,0]
        state['audio_input'] = (sr, data)
        if sd_switch == 'Yes':
            rec_result = self.funasr_model.generate(data, return_raw_text=True, is_final=True, hotword=hotwords, cache={})
            res_srt = generate_srt(rec_result[0]['sentence_info'])
            state['sd_sentences'] = rec_result[0]['sentence_info']
        else:
            rec_result = self.funasr_model.generate(data, 
                                                    return_spk_res=False, 
                                                    sentence_timestamp=True, 
                                                    return_raw_text=True, 
                                                    is_final=True, 
                                                    hotword=hotwords,
                                                    output_dir=output_dir,
                                                    cache={})
            res_srt = generate_srt(rec_result[0]['sentence_info'])
        state['recog_res_raw'] = rec_result[0]['raw_text']
        state['timestamp'] = rec_result[0]['timestamp']
        state['sentences'] = rec_result[0]['sentence_info']
        res_text = rec_result[0]['text']
        return res_text, res_srt, state

    def clip(self, dest_text, start_ost, end_ost, state, dest_spk=None, output_dir=None, timestamp_list=None):
        # get from state
        audio_input = state['audio_input']
        recog_res_raw = state['recog_res_raw']
        timestamp = state['timestamp']
        sentences = state['sentences']
        sr, data = audio_input
        data = data.astype(np.float64)

        if timestamp_list is not None:
            all_ts = []
            if dest_spk is None or dest_spk == '' or 'sd_sentences' not in state:
                for _dest_text in dest_text.split('#'):
                    if '[' in _dest_text:
                        match = re.search(r'\[(\d+),\s*(\d+)\]', _dest_text)
                        if match:
                            offset_b, offset_e = map(int, match.groups())
                            log_append = ""
                        else:
                            offset_b, offset_e = 0, 0
                            log_append = "(Bracket detected in dest_text but offset time matching failed)"
                        _dest_text = _dest_text[:_dest_text.find('[')]
                    else:
                        log_append = ""
                        offset_b, offset_e = 0, 0
                    _dest_text = pre_proc(_dest_text)
                    ts = proc(recog_res_raw, timestamp, _dest_text)
                    for _ts in ts: all_ts.append([_ts[0]+offset_b*16, _ts[1]+offset_e*16])
                    if len(ts) > 1 and match:
                        log_append += '(offsets detected but No.{} sub-sentence matched to {} periods in audio, \
                            offsets are applied to all periods)'
            else:
                for _dest_spk in dest_spk.split('#'):
                    ts = proc_spk(_dest_spk, state['sd_sentences'])
                    for _ts in ts: all_ts.append(_ts)
                log_append = ""
        else:
            all_ts = timestamp_list
        ts = all_ts
        # ts.sort()
        srt_index = 0
        clip_srt = ""
        if len(ts):
            start, end = ts[0]
            start = min(max(0, start+start_ost*16), len(data))
            end = min(max(0, end+end_ost*16), len(data))
            res_audio = data[start:end]
            start_end_info = "from {} to {}".format(start/16000, end/16000)
            srt_clip, _, srt_index = generate_srt_clip(sentences, start/16000.0, end/16000.0, begin_index=srt_index)
            clip_srt += srt_clip
            for _ts in ts[1:]:  # multiple sentence input or multiple output matched
                start, end = _ts
                start = min(max(0, start+start_ost*16), len(data))
                end = min(max(0, end+end_ost*16), len(data))
                start_end_info += ", from {} to {}".format(start, end)
                res_audio = np.concatenate([res_audio, data[start+start_ost*16:end+end_ost*16]], -1)
                srt_clip, _, srt_index = generate_srt_clip(sentences, start/16000.0, end/16000.0, begin_index=srt_index-1)
                clip_srt += srt_clip
        if len(ts):
            message = "{} periods found in the speech: ".format(len(ts)) + start_end_info + log_append
        else:
            message = "No period found in the speech, return raw speech. You may check the recognition result and try other destination text."
            res_audio = data
        return (sr, res_audio), message, clip_srt

    def video_recog(self, video_filename, sd_switch='no', hotwords="", output_dir=None):
        video = mpy.VideoFileClip(video_filename)
        # Extract the base name, add '_clip.mp4', and 'wav'
        if output_dir is not None:
            os.makedirs(output_dir, exist_ok=True)
            _, base_name = os.path.split(video_filename)
            base_name, _ = os.path.splitext(base_name)
            clip_video_file = base_name + '_clip.mp4'
            audio_file = base_name + '.wav'
            audio_file = os.path.join(output_dir, audio_file)
        else:
            base_name, _ = os.path.splitext(video_filename)
            clip_video_file = base_name + '_clip.mp4'
            audio_file = base_name + '.wav'
        video.audio.write_audiofile(audio_file)
        wav = librosa.load(audio_file, sr=16000)[0]
        # delete the audio file after processing
        if os.path.exists(audio_file):
            os.remove(audio_file)
        state = {
            'video_filename': video_filename,
            'clip_video_file': clip_video_file,
            'video': video,
        }
        # res_text, res_srt = self.recog((16000, wav), state)
        return self.recog((16000, wav), sd_switch, state, hotwords, output_dir)

    def video_clip(self, 
                   dest_text, 
                   start_ost, 
                   end_ost, 
                   state, 
                   font_size=32, 
                   font_color='white', 
                   add_sub=False, 
                   dest_spk=None, 
                   output_dir=None,
                   timestamp_list=None):
        # get from state
        recog_res_raw = state['recog_res_raw']
        timestamp = state['timestamp']
        sentences = state['sentences']
        video = state['video']
        clip_video_file = state['clip_video_file']
        video_filename = state['video_filename']
        
        if timestamp_list is None:
            all_ts = []
            if dest_spk is None or dest_spk == '' or 'sd_sentences' not in state:
                for _dest_text in dest_text.split('#'):
                    if '[' in _dest_text:
                        match = re.search(r'\[(\d+),\s*(\d+)\]', _dest_text)
                        if match:
                            offset_b, offset_e = map(int, match.groups())
                            log_append = ""
                        else:
                            offset_b, offset_e = 0, 0
                            log_append = "(Bracket detected in dest_text but offset time matching failed)"
                        _dest_text = _dest_text[:_dest_text.find('[')]
                    else:
                        offset_b, offset_e = 0, 0
                        log_append = ""
                    _dest_text = pre_proc(_dest_text)
                    ts = proc(recog_res_raw, timestamp, _dest_text)
                    for _ts in ts: all_ts.append([_ts[0]+offset_b*16, _ts[1]+offset_e*16])
                    if len(ts) > 1 and match:
                        log_append += '(offsets detected but No.{} sub-sentence matched to {} periods in audio, \
                            offsets are applied to all periods)'
            else:
                for _dest_spk in dest_spk.split('#'):
                    ts = proc_spk(_dest_spk, state['sd_sentences'])
                    for _ts in ts: all_ts.append(_ts)
        else:  # AI clip pass timestamp as input directly
            all_ts = [[i[0]*16.0, i[1]*16.0] for i in timestamp_list]
        
        srt_index = 0
        time_acc_ost = 0.0
        ts = all_ts
        # ts.sort()
        clip_srt = ""
        if len(ts):
            start, end = ts[0][0] / 16000, ts[0][1] / 16000
            srt_clip, subs, srt_index = generate_srt_clip(sentences, start, end, begin_index=srt_index, time_acc_ost=time_acc_ost)
            start, end = start+start_ost/1000.0, end+end_ost/1000.0
            video_clip = video.subclip(start, end)
            start_end_info = "from {} to {}".format(start, end)
            clip_srt += srt_clip
            if add_sub:
                generator = lambda txt: TextClip(txt, font='./font/STHeitiMedium.ttc', fontsize=font_size, color=font_color)
                subtitles = SubtitlesClip(subs, generator)
                video_clip = CompositeVideoClip([video_clip, subtitles.set_pos(('center','bottom'))])
            concate_clip = [video_clip]
            time_acc_ost += end+end_ost/1000.0 - (start+start_ost/1000.0)
            for _ts in ts[1:]:
                start, end = _ts[0] / 16000, _ts[1] / 16000
                srt_clip, subs, srt_index = generate_srt_clip(sentences, start, end, begin_index=srt_index-1, time_acc_ost=time_acc_ost)
                chi_subs = []
                sub_starts = subs[0][0][0]
                for sub in subs:
                    chi_subs.append(((sub[0][0]-sub_starts, sub[0][1]-sub_starts), sub[1]))
                start, end = start+start_ost/1000.0, end+end_ost/1000.0
                _video_clip = video.subclip(start, end)
                start_end_info += ", from {} to {}".format(start, end)
                clip_srt += srt_clip
                if add_sub:
                    generator = lambda txt: TextClip(txt, font='./font/STHeitiMedium.ttc', fontsize=font_size, color=font_color)
                    subtitles = SubtitlesClip(chi_subs, generator)
                    _video_clip = CompositeVideoClip([_video_clip, subtitles.set_pos(('center','bottom'))])
                    # _video_clip.write_videofile("debug.mp4", audio_codec="aac")
                concate_clip.append(copy.copy(_video_clip))
                time_acc_ost += end+end_ost/1000.0 - (start+start_ost/1000.0)
            message = "{} periods found in the audio: ".format(len(ts)) + start_end_info
            logging.warning("Concating...")
            if len(concate_clip) > 1:
                video_clip = concatenate_videoclips(concate_clip)
            # clip_video_file = clip_video_file[:-4] + '_no{}.mp4'.format(self.GLOBAL_COUNT)
            if output_dir is not None:
                os.makedirs(output_dir, exist_ok=True)
                _, file_with_extension = os.path.split(clip_video_file)
                clip_video_file_name, _ = os.path.splitext(file_with_extension)
                print(output_dir, clip_video_file)
                clip_video_file = os.path.join(output_dir, "{}_no{}.mp4".format(clip_video_file_name, self.GLOBAL_COUNT))
                temp_audio_file = os.path.join(output_dir, "{}_tempaudio_no{}.mp4".format(clip_video_file_name, self.GLOBAL_COUNT))
            else:
                clip_video_file = clip_video_file[:-4] + '_no{}.mp4'.format(self.GLOBAL_COUNT)
                temp_audio_file = clip_video_file[:-4] + '_tempaudio_no{}.mp4'.format(self.GLOBAL_COUNT)
            video_clip.write_videofile(clip_video_file, audio_codec="aac", temp_audiofile=temp_audio_file)
            self.GLOBAL_COUNT += 1
        else:
            clip_video_file = video_filename
            message = "No period found in the audio, return raw speech. You may check the recognition result and try other destination text."
            srt_clip = ''
        return clip_video_file, message, clip_srt


def get_parser():
    parser = ArgumentParser(
        description="ClipVideo Argument",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )
    parser.add_argument(
        "--stage",
        type=int,
        choices=(1, 2),
        help="Stage, 0 for recognizing and 1 for clipping",
        required=True
    )
    parser.add_argument(
        "--file",
        type=str,
        default=None,
        help="Input file path",
        required=True
    )
    parser.add_argument(
        "--sd_switch",
        type=str,
        choices=("no", "yes"),
        default="no",
        help="Turn on the speaker diarization or not",
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default='./output',
        help="Output files path",
    )
    parser.add_argument(
        "--dest_text",
        type=str,
        default=None,
        help="Destination text string for clipping",
    )
    parser.add_argument(
        "--dest_spk",
        type=str,
        default=None,
        help="Destination spk id for clipping",
    )
    parser.add_argument(
        "--start_ost",
        type=int,
        default=0,
        help="Offset time in ms at beginning for clipping"
    )
    parser.add_argument(
        "--end_ost",
        type=int,
        default=0,
        help="Offset time in ms at ending for clipping"
    )
    parser.add_argument(
        "--output_file",
        type=str,
        default=None,
        help="Output file path"
    )
    return parser


def runner(stage, file, sd_switch, output_dir, dest_text, dest_spk, start_ost, end_ost, output_file, config=None):
    audio_suffixs = ['.wav','.mp3','.aac','.m4a','.flac']
    video_suffixs = ['.mp4','.avi','.mkv','.flv','.mov','.webm','.ts','.mpeg']
    _,ext = os.path.splitext(file)
    if ext.lower() in audio_suffixs:
        mode = 'audio'
    elif ext.lower() in video_suffixs:
        mode = 'video'
    else:
        logging.error("Unsupported file format: {}\n\nplease choise one of the following: {}".format(file),audio_suffixs+video_suffixs)
        sys.exit(1) # exit if the file is not supported
    while output_dir.endswith('/'):
        output_dir = output_dir[:-1]
    if not os.path.exists(output_dir):
        os.mkdir(output_dir)
    if stage == 1:
        from funasr import AutoModel
        # initialize funasr automodel
        logging.warning("Initializing modelscope asr pipeline.")
        funasr_model = AutoModel(model="iic/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
                  vad_model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch",
                  punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch",
                  spk_model="damo/speech_campplus_sv_zh-cn_16k-common",
                  )
        audio_clipper = VideoClipper(funasr_model)
        if mode == 'audio':
            logging.warning("Recognizing audio file: {}".format(file))
            wav, sr = librosa.load(file, sr=16000)
            res_text, res_srt, state = audio_clipper.recog((sr, wav), sd_switch)
        if mode == 'video':
            logging.warning("Recognizing video file: {}".format(file))
            res_text, res_srt, state = audio_clipper.video_recog(file, sd_switch)
        total_srt_file = output_dir + '/total.srt'
        with open(total_srt_file, 'w') as fout:
            fout.write(res_srt)
            logging.warning("Write total subtitle to {}".format(total_srt_file))
        write_state(output_dir, state)
        logging.warning("Recognition successed. You can copy the text segment from below and use stage 2.")
        print(res_text)
    if stage == 2:
        audio_clipper = VideoClipper(None)
        if mode == 'audio':
            state = load_state(output_dir)
            wav, sr = librosa.load(file, sr=16000)
            state['audio_input'] = (sr, wav)
            (sr, audio), message, srt_clip = audio_clipper.clip(dest_text, start_ost, end_ost, state, dest_spk=dest_spk)
            if output_file is None:
                output_file = output_dir + '/result.wav'
            clip_srt_file = output_file[:-3] + 'srt'
            logging.warning(message)
            sf.write(output_file, audio, 16000)
            assert output_file.endswith('.wav'), "output_file must ends with '.wav'"
            logging.warning("Save clipped wav file to {}".format(output_file))
            with open(clip_srt_file, 'w') as fout:
                fout.write(srt_clip)
                logging.warning("Write clipped subtitle to {}".format(clip_srt_file))
        if mode == 'video':
            state = load_state(output_dir)
            state['video_filename'] = file
            if output_file is None:
                state['clip_video_file'] = file[:-4] + '_clip.mp4'
            else:
                state['clip_video_file'] = output_file
            clip_srt_file = state['clip_video_file'][:-3] + 'srt'
            state['video'] = mpy.VideoFileClip(file)
            clip_video_file, message, srt_clip = audio_clipper.video_clip(dest_text, start_ost, end_ost, state, dest_spk=dest_spk)
            logging.warning("Clipping Log: {}".format(message))
            logging.warning("Save clipped mp4 file to {}".format(clip_video_file))
            with open(clip_srt_file, 'w') as fout:
                fout.write(srt_clip)
                logging.warning("Write clipped subtitle to {}".format(clip_srt_file))


def main(cmd=None):
    print(get_commandline_args(), file=sys.stderr)
    parser = get_parser()
    args = parser.parse_args(cmd)
    kwargs = vars(args)
    runner(**kwargs)


if __name__ == '__main__':
    main()