RAHMAN00700's picture
changes made in repo
0de8564
import os
import streamlit as st
import tempfile
import pandas as pd
import json
import xml.etree.ElementTree as ET
import yaml
from dotenv import load_dotenv
from bs4 import BeautifulSoup
from pptx import Presentation
from docx import Document
from langchain.document_loaders import PyPDFLoader, TextLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain.chains import RetrievalQA
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from ibm_watson_machine_learning.foundation_models import Model
from ibm_watson_machine_learning.foundation_models.extensions.langchain import WatsonxLLM
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
from ibm_watson_machine_learning.foundation_models.utils.enums import DecodingMethods
# Initialize index and chain to None1
index = None
rag_chain = None
# Custom loader for DOCX files
class DocxLoader:
def __init__(self, file_path):
self.file_path = file_path
def load(self):
document = Document(self.file_path)
text_content = [para.text for para in document.paragraphs]
return " ".join(text_content)
# Custom loader for PPTX files
class PptxLoader:
def __init__(self, file_path):
self.file_path = file_path
def load(self):
presentation = Presentation(self.file_path)
text_content = [shape.text for slide in presentation.slides for shape in slide.shapes if hasattr(shape, "text")]
return " ".join(text_content)
# Custom loader for additional file types
def load_csv(file_path):
df = pd.read_csv(file_path)
page_size = 100
page_number = st.number_input("Page number", min_value=1, max_value=(len(df) // page_size) + 1, step=1, value=1)
start_index = (page_number - 1) * page_size
end_index = start_index + page_size
st.dataframe(df.iloc[start_index:end_index])
return df.to_string(index=False)
def load_json(file_path):
with open(file_path, 'r') as file:
data = json.load(file)
return json.dumps(data, indent=2)
def load_xml(file_path):
tree = ET.parse(file_path)
root = tree.getroot()
return ET.tostring(root, encoding="unicode")
def load_yaml(file_path):
with open(file_path, 'r') as file:
data = yaml.safe_load(file)
return yaml.dump(data)
def load_html(file_path):
with open(file_path, 'r', encoding='utf-8') as file:
soup = BeautifulSoup(file, 'html.parser')
return soup.get_text()
# Caching function to load various file types
@st.cache_resource
def load_file(file_name, file_type):
loaders = []
text = None
if file_type == "pdf":
loaders = [PyPDFLoader(file_name)]
elif file_type == "docx":
loader = DocxLoader(file_name)
text = loader.load()
elif file_type == "pptx":
loader = PptxLoader(file_name)
text = loader.load()
elif file_type == "txt":
loaders = [TextLoader(file_name)]
elif file_type == "csv":
text = load_csv(file_name)
elif file_type == "json":
text = load_json(file_name)
elif file_type == "xml":
text = load_xml(file_name)
elif file_type == "yaml":
text = load_yaml(file_name)
elif file_type == "html":
text = load_html(file_name)
elif file_type == "htm":
text = load_html(file_name)
else:
st.error("Unsupported file type.")
return None
if text:
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt") as temp_file:
temp_file.write(text.encode("utf-8"))
temp_file_path = temp_file.name
loaders = [TextLoader(temp_file_path)]
if loaders:
index = VectorstoreIndexCreator(
embedding=HuggingFaceEmbeddings(model_name="all-MiniLM-L12-v2"),
text_splitter=RecursiveCharacterTextSplitter(chunk_size=450, chunk_overlap=50)
).from_loaders(loaders)
st.success("Index created successfully!")
return index
return None
# Watsonx API setup
load_dotenv()
watsonx_api_key = os.getenv("WATSONX_API_KEY")
watsonx_project_id = os.getenv("WATSONX_PROJECT_ID")
if not watsonx_api_key or not watsonx_project_id:
st.error("API Key or Project ID is not set. Please set them as environment variables.")
prompt_template_br = PromptTemplate(
input_variables=["context", "question"],
template="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
I am a helpful assistant.
<|eot_id|>
{context}
<|start_header_id|>user<|end_header_id|>
{question}<|eot_id|>
"""
)
with st.sidebar:
st.title("Multi-Document Retrieval with Watsonx")
st.sidebar.write("")
st.sidebar.markdown("Developed by **Abdul Rahman H**")
watsonx_model = st.selectbox("Model", ["meta-llama/llama-3-405b-instruct", "codellama/codellama-34b-instruct-hf", "ibm/granite-20b-multilingual"])
max_new_tokens = st.slider("Max output tokens", min_value=100, max_value=4000, value=600, step=100)
decoding_method = st.radio("Decoding", (DecodingMethods.GREEDY.value, DecodingMethods.SAMPLE.value))
parameters = {
GenParams.DECODING_METHOD: decoding_method,
GenParams.MAX_NEW_TOKENS: max_new_tokens,
GenParams.MIN_NEW_TOKENS: 1,
GenParams.TEMPERATURE: 0,
GenParams.TOP_K: 50,
GenParams.TOP_P: 1,
GenParams.STOP_SEQUENCES: [],
GenParams.REPETITION_PENALTY: 1
}
st.info("Upload a file to use RAG")
uploaded_file = st.file_uploader("Upload file", accept_multiple_files=False, type=["pdf", "docx", "txt", "pptx", "csv", "json", "xml", "yaml", "html"])
if uploaded_file is not None:
bytes_data = uploaded_file.read()
st.write("Filename:", uploaded_file.name)
with open(uploaded_file.name, 'wb') as f:
f.write(bytes_data)
file_type = uploaded_file.name.split('.')[-1].lower()
index = load_file(uploaded_file.name, file_type)
model_name = watsonx_model
st.info("Setting up Watsonx...")
my_credentials = {
"url": "https://us-south.ml.cloud.ibm.com",
"apikey": watsonx_api_key
}
params = parameters
project_id = watsonx_project_id
space_id = None
verify = False
model = WatsonxLLM(model=Model(model_name, my_credentials, params, project_id, space_id, verify))
if model:
st.info(f"Model {model_name} ready.")
chain = LLMChain(llm=model, prompt=prompt_template_br, verbose=True)
if chain and index is not None:
rag_chain = RetrievalQA.from_chain_type(
llm=model,
chain_type="stuff",
retriever=index.vectorstore.as_retriever(),
chain_type_kwargs={"prompt": prompt_template_br},
return_source_documents=False,
verbose=True
)
st.info("Document-based retrieval is ready.")
else:
st.warning("No document uploaded or chain setup issue.")
# Chat loop
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
st.chat_message(message["role"]).markdown(message["content"])
prompt = st.chat_input("Ask your question here", disabled=False if chain else True)
if prompt:
st.chat_message("user").markdown(prompt)
if rag_chain:
response_text = rag_chain.run(prompt).strip()
else:
response_text = chain.run(question=prompt, context="").strip()
st.session_state.messages.append({'role': 'User', 'content': prompt})
st.chat_message("assistant").markdown(response_text)
st.session_state.messages.append({'role': 'Assistant', 'content': response_text})