import streamlit as st import json from ibm_watson import DiscoveryV2 from ibm_cloud_sdk_core.authenticators import IAMAuthenticator from ibm_watson_machine_learning.foundation_models import Model from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams from ibm_watson_machine_learning.foundation_models.utils.enums import ModelTypes, DecodingMethods # API Keys and Configuration (Hidden from UI) DISCOVERY_API_KEY = '5sSmoI6y0ZHP7D3a6Iu80neypsbK3tsUZR_VdRAb7ed2' DISCOVERY_SERVICE_URL = 'https://api.us-south.discovery.watson.cloud.ibm.com/instances/62dc0387-6c6f-4128-b479-00cf5dea09ef' WATSONX_API_KEY = "zf-5qgRvW-_RMBGb0bQw5JPPGGj5wdYpLVypdjQxBGJz" WATSONX_URL = "https://us-south.ml.cloud.ibm.com" WATSONX_PROJECT_ID = "32a4b026-a46a-48df-aae3-31e16caabc3b" WATSONX_MODEL_TYPE = "meta-llama/llama-3-1-70b-instruct" MAX_TOKENS = 600 MIN_TOKENS = 50 DECODING = DecodingMethods.GREEDY TEMPERATURE = 0.7 # Initialize Watson Discovery authenticator = IAMAuthenticator(DISCOVERY_API_KEY) discovery = DiscoveryV2( version='2020-08-30', authenticator=authenticator ) discovery.set_service_url(DISCOVERY_SERVICE_URL) # Function to get Watsonx model def get_model(model_type, max_tokens, min_tokens, decoding, temperature): generate_params = { GenParams.MAX_NEW_TOKENS: max_tokens, GenParams.MIN_NEW_TOKENS: min_tokens, GenParams.DECODING_METHOD: decoding, GenParams.TEMPERATURE: temperature, } model = Model( model_id=model_type, params=generate_params, credentials={"apikey": WATSONX_API_KEY, "url": WATSONX_URL}, project_id=WATSONX_PROJECT_ID ) return model # Streamlit UI setup st.title("Watsonx AI and Discovery Integration") st.write("This app allows you to ask questions, which will be answered by a combination of Watson Discovery and Watsonx model.") # Input for the question question = st.text_input("Enter your question:") if st.button('Get Answer'): if question: try: # Query Watson Discovery response = discovery.query( project_id='016da9fc-26f5-464a-a0b8-c9b0b9da83c7', collection_ids=['1d91d603-cd71-5cf5-0000-019325bcd328'], passages={'enabled': True, 'max_per_document': 5, 'find_answers': True}, natural_language_query=question ).get_result() # Process the Discovery response passages = response['results'][0]['document_passages'] passages = [p['passage_text'].replace('', '').replace('', '').replace('\n', '') for p in passages] context = '\n '.join(passages) # Prepare the prompt for Watsonx prompt = ( "[INST] <> " "Please answer the following question in one sentence using this text. " "If the question is unanswerable, say 'unanswerable'. " "Do not include information that's not relevant to the question. " "Question:" + question + '<>' + context + '[/INST]' ) # Generate the answer using Watsonx model = get_model(WATSONX_MODEL_TYPE, MAX_TOKENS, MIN_TOKENS, DECODING, TEMPERATURE) generated_response = model.generate(prompt) response_text = generated_response['results'][0]['generated_text'] # Display the generated response st.subheader("Generated Answer:") st.write(response_text) except Exception as e: st.error(f"Error fetching the answer: {str(e)}") else: st.error("Please enter a question!")