# Load the fine-tuned MarianMT model and tokenizer # Replace with the path to your model directory model_dir = '/content/drive/MyDrive/fine_tuned_marian' # Replace with the correct path model = MarianMTModel.from_pretrained(model_dir) tokenizer = MarianTokenizer.from_pretrained(model_dir) # Function to translate text def translate_arabic_to_english(arabic_text): # Tokenize the input text inputs = tokenizer(arabic_text, return_tensors="pt", padding=True, truncation=True, max_length=128) # Move inputs to the same device as the model device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) inputs = {k: v.to(device) for k, v in inputs.items()} # Generate translation with torch.no_grad(): translated_ids = model.generate(**inputs) # Decode the translated text translated_text = tokenizer.decode(translated_ids[0], skip_special_tokens=True) return translated_text # Create the Gradio interface iface = gr.Interface( fn=translate_arabic_to_english, inputs=gr.Textbox(lines=5, placeholder="Enter Arabic text here..."), outputs="text", title="Arabic to English Machine Translation", description="Translate Arabic text to English ", ) # Launch the interface iface.launch()