File size: 3,921 Bytes
bed15e6 4e8485b bed15e6 4e8485b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import fitz # PyMuPDF
from sentence_transformers import SentenceTransformer
import numpy as np
import faiss
from typing import List, Dict
class MyApp:
def __init__(self) -> None:
self.documents = []
self.embeddings = None
self.index = None
self.model = SentenceTransformer('all-MiniLM-L6-v2')
def load_pdfs(self, file_paths: List[str]) -> None:
"""Extracts text from multiple PDF files and stores them."""
self.documents = []
for file_path in file_paths:
doc = fitz.open(file_path)
for page_num in range(len(doc)):
page = doc[page_num]
text = page.get_text()
self.documents.append({"file": file_path, "page": page_num + 1, "content": text})
print("PDFs processed successfully!")
def build_vector_db(self) -> None:
"""Builds a vector database using the content of the PDFs."""
if not self.documents:
print("No documents to process.")
return
contents = [doc["content"] for doc in self.documents]
self.embeddings = self.model.encode(contents, show_progress_bar=True)
self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
self.index.add(np.array(self.embeddings))
print("Vector database built successfully!")
def search_documents(self, query: str, k: int = 3) -> List[Dict]:
"""Searches for relevant document snippets using vector similarity."""
if not self.index:
print("Vector database is not built.")
return []
query_embedding = self.model.encode([query], show_progress_bar=False)
D, I = self.index.search(np.array(query_embedding), k)
results = [self.documents[i] for i in I[0]]
return results if results else [{"content": "No relevant documents found."}]
import gradio as gr
from typing import List, Tuple
app = MyApp()
def upload_files(files) -> str:
file_paths = [file.name for file in files]
app.load_pdfs(file_paths)
return f"Uploaded {len(files)} files successfully."
def build_vector_db() -> str:
app.build_vector_db()
return "Vector database built successfully!"
def respond(message: str, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], str]:
# Retrieve relevant documents
retrieved_docs = app.search_documents(message)
context = "\n".join([f"File: {doc['file']}, Page: {doc['page']}\n{doc['content']}" for doc in retrieved_docs])
# Generate response using the generative model
# Assuming you have set up the generative model as in your original code
# Replace the following line with your model's response generation
response_content = f"Simulated response based on the following context:\n{context}"
# Append the message and generated response to the chat history
history.append((message, response_content))
return history, ""
with gr.Blocks() as demo:
gr.Markdown("# PDF Chatbot")
gr.Markdown("Upload your PDFs, build a vector database, and start querying your documents.")
with gr.Row():
with gr.Column():
upload_btn = gr.File(label="Upload PDFs", file_types=[".pdf"], file_count="multiple")
upload_message = gr.Textbox(label="Upload Status", lines=2)
build_db_btn = gr.Button("Build Vector Database")
db_message = gr.Textbox(label="DB Build Status", lines=2)
upload_btn.change(upload_files, inputs=[upload_btn], outputs=[upload_message])
build_db_btn.click(build_vector_db, inputs=[], outputs=[db_message])
with gr.Column():
chatbot = gr.Chatbot(label="Chat Responses")
query_input = gr.Textbox(label="Enter your query here")
submit_btn = gr.Button("Submit")
submit_btn.click(respond, inputs=[query_input, chatbot], outputs=[chatbot, query_input])
demo.launch() |