File size: 5,796 Bytes
1720c98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cd7388
1720c98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cd7388
1720c98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e70119
1720c98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import gradio as gr
from huggingface_hub import InferenceClient
from typing import List, Tuple
import fitz  # PyMuPDF
from sentence_transformers import SentenceTransformer, util
import numpy as np
import faiss

client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

# Placeholder for the app's state
class MyApp:
    def __init__(self) -> None:
        self.documents = []
        self.embeddings = None
        self.index = None
        self.load_pdf("DBT.pdf")
        self.build_vector_db()

    def load_pdf(self, file_path: str) -> None:
        """Extracts text from a PDF file and stores it in the app's documents."""
        doc = fitz.open(file_path)
        self.documents = []
        for page_num in range(len(doc)):
            page = doc[page_num]
            text = page.get_text()
            self.documents.append({"page": page_num + 1, "content": text})
        print("PDF processed successfully!")

    def build_vector_db(self) -> None:
        """Builds a vector database using the content of the PDF."""
        model = SentenceTransformer('all-MiniLM-L6-v2')
        self.embeddings = model.encode([doc["content"] for doc in self.documents])
        self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
        self.index.add(np.array(self.embeddings))
        print("Vector database built successfully!")

    def search_documents(self, query: str, k: int = 3) -> List[str]:
        """Searches for relevant documents using vector similarity."""
        model = SentenceTransformer('all-MiniLM-L6-v2')
        query_embedding = model.encode([query])
        D, I = self.index.search(np.array(query_embedding), k)
        results = [self.documents[i]["content"] for i in I[0]]
        return results if results else ["No relevant documents found."]

app = MyApp()

def preprocess_input(user_input: str) -> str:
    """Preprocesses user input to enhance it for better context."""
    if "therapy" or "excercise" in user_input.lower():
        return "I am looking for guidance on therapy. Can you help me with some exercises or techniques to manage my stress and emotions?"
    # Add more rules as needed
    return user_input

def preprocess_response(response: str) -> str:
    """Preprocesses the response to make it more polished."""
    response = response.strip()
    response = response.replace("\n\n", "\n")
    response = response.replace(" ,", ",")
    response = response.replace(" .", ".")
    response = " ".join(response.split())
    return response

def shorten_response(response: str) -> str:
    """Uses the Zephyr model to shorten and refine the response."""
    messages = [{"role": "system", "content": "Shorten and refine this response in bullet list."}, {"role": "user", "content": response}]
    result = client.chat_completion(messages, max_tokens=256, temperature=0.5, top_p=0.9)
    return result.choices[0].message['content'].strip()

def respond(message: str, history: List[Tuple[str, str]]):
    system_message = "You are a concisely speaking empathetic Dialectical Behaviour Therapist assistant. You politely guide users through DBT exercises based on the given DBT book. You must say one thing at a time and ask follow-up questions to continue the chat."
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    # Preprocess user input
    preprocessed_message = preprocess_input(message)
    messages.append({"role": "user", "content": preprocessed_message})

    # RAG - Retrieve relevant documents
    retrieved_docs = app.search_documents(preprocessed_message)
    context = "\n".join(retrieved_docs)
    if context.strip():
        messages.append({"role": "system", "content": "Relevant documents: " + context})

    response = client.chat_completion(messages, max_tokens=1024, temperature=0.7, top_p=0.9)
    response_content = "".join([choice.message['content'] for choice in response.choices if 'content' in choice.message])
    
    polished_response = preprocess_response(response_content)
    shortened_response = shorten_response(polished_response)

    history.append((message, shortened_response))
    return history, ""

with gr.Blocks() as demo:
    gr.Markdown("# 🧘‍♀️ **Dialectical Behaviour Therapy**")
    gr.Markdown(
        "‼️Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. "
        "We are not medical practitioners, and the use of this chatbot is at your own responsibility."
    )

    chatbot = gr.Chatbot()

    with gr.Row():
        txt_input = gr.Textbox(
            show_label=False,
            placeholder="Type your message here...",
            lines=1
        )
        submit_btn = gr.Button("Submit", scale=1)
        refresh_btn = gr.Button("Refresh Chat", scale=1, variant="secondary")

    example_questions = [
        ["I feel overwhelmed with work."],
        ["Can you guide me through a quick meditation?"],
        ["How do I stop worrying about things I can't control?"],
        ["What are some DBT skills for managing anxiety?"],
        ["Can you explain mindfulness in DBT?"],
        ["What is radical acceptance?"],
        ["How can I practice distress tolerance?"],
        ["What are some techniques to handle distressing situations?"],
        ["How does DBT help with emotional regulation?"],
        ["Can you give me an example of an interpersonal effectiveness skill?"]
    ]

    gr.Examples(examples=example_questions, inputs=[txt_input])

    submit_btn.click(respond, [txt_input, chatbot], [chatbot, txt_input])
    refresh_btn.click(lambda: [], None, chatbot)

if __name__ == "__main__":
    demo.launch()