File size: 6,983 Bytes
bad3068
 
a6bfbe0
bad3068
 
 
 
169f028
bad3068
a6bfbe0
bad3068
a6bfbe0
bad3068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6bfbe0
 
 
bad3068
a6bfbe0
bad3068
 
a6bfbe0
 
 
 
 
 
 
bad3068
a6bfbe0
bad3068
a6bfbe0
a2ac156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6bfbe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cca7bff
a6bfbe0
 
 
 
 
 
 
 
 
 
 
169f028
a6bfbe0
bad3068
a6bfbe0
 
 
 
 
 
 
 
 
 
 
 
 
 
169f028
a6bfbe0
 
 
bad3068
a6bfbe0
 
bad3068
 
a6bfbe0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import gradio as gr
from google.generativeai import GenerativeModel, configure, types
import fitz  # PyMuPDF
from sentence_transformers import SentenceTransformer
import numpy as np
import faiss
from typing import List, Tuple  # Make sure to import List and Tuple

# Set up the Google API for the Gemini model
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
configure(api_key=GOOGLE_API_KEY)

# Placeholder for the app's state
class MyApp:
    def __init__(self) -> None:
        self.documents = []
        self.embeddings = None
        self.index = None
        self.load_pdf("THEDIA1.pdf")
        self.build_vector_db()

    def load_pdf(self, file_path: str) -> None:
        """Extracts text from a PDF file and stores it in the app's documents."""
        doc = fitz.open(file_path)
        self.documents = []
        for page_num in range(len(doc)):
            page = doc[page_num]
            text = page.get_text()
            self.documents.append({"page": page_num + 1, "content": text})
        print("PDF processed successfully!")

    def build_vector_db(self) -> None:
        """Builds a vector database using the content of the PDF."""
        model = SentenceTransformer('all-MiniLM-L6-v2')
        self.embeddings = model.encode([doc["content"] for doc in self.documents], show_progress_bar=True)
        self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
        self.index.add(np.array(self.embeddings))
        print("Vector database built successfully!")

    def search_documents(self, query: str, k: int = 3) -> List[str]:
        """Searches for relevant documents using vector similarity."""
        model = SentenceTransformer('all-MiniLM-L6-v2')
        query_embedding = model.encode([query], show_progress_bar=False)
        D, I = self.index.search(np.array(query_embedding), k)
        results = [self.documents[i]["content"] for i in I[0]]
        return results if results else ["No relevant documents found."]

app = MyApp()

def respond(message: str, history: List[Tuple[str, str]]):
    system_message = (
        "You are a supportive and empathetic Dialectical Behaviour Therapist assistant. "
        "You politely guide users through DBT exercises based on the given DBT book. "
        "You must say one thing at a time and ask follow-up questions to continue the chat."
    )
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    # RAG - Retrieve relevant documents if the query suggests exercises or specific information
    if any(
        keyword in message.lower()
        for keyword in ["exercise", "technique", "information", "guide", "help", "how to"]
    ):
        retrieved_docs = app.search_documents(message)
        context = "\n".join(retrieved_docs)
        if context.strip():
            messages.append({"role": "system", "content": "Relevant documents: " + context})

    # Generate response using the generative model
    model = GenerativeModel("gemini-1.5-pro-latest")
    generation_config = types.GenerationConfig(
        temperature=0.7,
        max_output_tokens=1024,
    )
    
    try:
        response = model.generate_content([message], generation_config=generation_config)
        # Properly access the response content
        response_content = response.text if hasattr(response, "text") else "No response generated."
    except Exception as e:
        response_content = f"An error occurred while generating the response: {str(e)}"

    # Append the message and generated response to the chat history
    history.append((message, response_content))
    return history, ""

def old_respond(message: str, history: List[Tuple[str, str]]):
    system_message = "You are a supportive and empathetic Dialectical Behaviour Therapist assistant. You politely guide users through DBT exercises based on the given DBT book. You must say one thing at a time and ask follow-up questions to continue the chat."
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    # RAG - Retrieve relevant documents if the query suggests exercises or specific information
    if any(keyword in message.lower() for keyword in ["exercise", "technique", "information", "guide", "help", "how to"]):
        retrieved_docs = app.search_documents(message)
        context = "\n".join(retrieved_docs)
        if context.strip():
            messages.append({"role": "system", "content": "Relevant documents: " + context})

    model = GenerativeModel("gemini-1.5-pro-latest")
    generation_config = types.GenerationConfig(
        temperature=0.7,
        max_output_tokens=1024
    )
    response = model.generate_content([message], generation_config=generation_config)

    response_content = response[0].text if response else "No response generated."
    history.append((message, response_content))
    return history, ""

with gr.Blocks(theme=gr.themes.Glass(primary_hue = "violet")) as demo:
    gr.Markdown("# 🧘‍♀️ **Dialectical Behaviour Therapy**")
    gr.Markdown(
        "‼️Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. "
        "We are not medical practitioners, and the use of this chatbot is at your own responsibility."
    )

    chatbot = gr.Chatbot()

    with gr.Row():
        txt_input = gr.Textbox(
            show_label=False,
            placeholder="",
            lines=1
        )
        submit_btn = gr.Button("Submit", scale=1)
        refresh_btn = gr.Button("Refresh Chat", scale=1, variant="secondary")

    example_questions = [
        ["What are some techniques to handle distressing situations?"],
        ["How does DBT help with emotional regulation?"],
        ["Can you give me an example of an interpersonal effectiveness skill?"],
        ["I want to practice mindfulness. Can you help me?"],
        ["I want to practice distraction techniques. What can I do?"],
        ["How do I plan self-accommodation?"],
        ["What are some distress tolerance skills?"],
        ["Can you help me with emotional regulation techniques?"],
        ["How can I improve my interpersonal effectiveness?"],
        ["What are some ways to cope with stress using DBT?"],
        ["Can you guide me through a grounding exercise?"]
    ]

    gr.Examples(examples=example_questions, inputs=[txt_input])

    submit_btn.click(fn=respond, inputs=[txt_input, chatbot], outputs=[chatbot, txt_input])
    refresh_btn.click(lambda: [], None, chatbot)

if __name__ == "__main__":
    demo.launch()