File size: 3,238 Bytes
bad3068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import os
import gradio as gr
import google.generativeai as genai
from typing import List, Tuple
import fitz  # PyMuPDF
from sentence_transformers import SentenceTransformer
import numpy as np
import faiss

# Initialize Google API Key
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
genai.configure(api_key=GOOGLE_API_KEY)

# Placeholder for the app's state
class MyApp:
    def __init__(self) -> None:
        self.documents = []
        self.embeddings = None
        self.index = None
        self.load_pdf("THEDIA1.pdf")
        self.build_vector_db()

    def load_pdf(self, file_path: str) -> None:
        """Extracts text from a PDF file and stores it in the app's documents."""
        doc = fitz.open(file_path)
        self.documents = []
        for page_num in range(len(doc)):
            page = doc[page_num]
            text = page.get_text()
            self.documents.append({"page": page_num + 1, "content": text})
        print("PDF processed successfully!")

    def build_vector_db(self) -> None:
        """Builds a vector database using FAISS and SentenceTransformer embeddings."""
        model = SentenceTransformer("all-MiniLM-L6-v2")
        embeddings = model.encode([doc["content"] for doc in self.documents])
        self.embeddings = np.array(embeddings, dtype="float32")
        self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
        self.index.add(self.embeddings)
        print("Vector database built successfully!")

    def search(self, query: str, top_k: int = 5) -> List[Tuple[int, str]]:
        """Searches for the most similar documents based on the query."""
        query_embedding = SentenceTransformer("all-MiniLM-L6-v2").encode([query])
        distances, indices = self.index.search(np.array(query_embedding, dtype="float32"), top_k)
        return [(self.documents[idx]["page"], self.documents[idx]["content"]) for idx in indices[0]]

    def generate_response(self, query: str) -> str:
        """Generates a response using the Gemini model based on the query."""
        if not GOOGLE_API_KEY:
            raise ValueError("GOOGLE_API_KEY is not set. Please set it up.")

        generation_config = genai.types.GenerationConfig(
            temperature=0.7,
            max_output_tokens=512
        )

        model_name = "gemini-1.5-pro-latest"
        model = genai.GenerativeModel(model_name)
        response = model.generate_content([query], generation_config=generation_config)
        
        return response[0].text if response else "No response generated."

# Gradio UI setup for interaction
def main():
    app = MyApp()

    def handle_query(query):
        search_results = app.search(query)
        response = app.generate_response(query)
        return {"Search Results": search_results, "Response": response}

    gr.Interface(
        fn=handle_query,
        inputs=gr.Textbox(placeholder="Enter your query here"),
        outputs=[
            gr.JSON(label="Search Results"),
            gr.Textbox(label="Generated Response")
        ],
        title="Dialectical Behavioral Exercise with Gemini",
        description="This app uses Google Gemini to generate responses based on document content."
    ).launch()

if __name__ == "__main__":
    main()