File size: 4,350 Bytes
c3ce506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
097afd2
c3ce506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eff3f31
 
c3ce506
 
 
 
 
 
 
 
 
 
8ddb2de
c79a60d
17a1885
c3ce506
7014665
c3ce506
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import gradio as gr
from huggingface_hub import InferenceClient
from typing import List, Tuple
import fitz  # PyMuPDF
from sentence_transformers import SentenceTransformer, util
import numpy as np
import faiss

client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

# Placeholder for the app's state
class MyApp:
    def __init__(self) -> None:
        self.documents = []
        self.embeddings = None
        self.index = None
        self.load_pdf("THEDIA1.pdf")
        self.build_vector_db()

    def load_pdf(self, file_path: str) -> None:
        """Extracts text from a PDF file and stores it in the app's documents."""
        doc = fitz.open(file_path)
        self.documents = []
        for page_num in range(len(doc)):
            page = doc[page_num]
            text = page.get_text()
            self.documents.append({"page": page_num + 1, "content": text})
        print("PDF processed successfully!")

    def build_vector_db(self) -> None:
        """Builds a vector database using the content of the PDF."""
        model = SentenceTransformer('all-MiniLM-L6-v2')
        self.embeddings = model.encode([doc["content"] for doc in self.documents])
        self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
        self.index.add(np.array(self.embeddings))
        print("Vector database built successfully!")

    def search_documents(self, query: str, k: int = 3) -> List[str]:
        """Searches for relevant documents using vector similarity."""
        model = SentenceTransformer('all-MiniLM-L6-v2')
        query_embedding = model.encode([query])
        D, I = self.index.search(np.array(query_embedding), k)
        results = [self.documents[i]["content"] for i in I[0]]
        return results if results else ["No relevant documents found."]

app = MyApp()

def respond(
    message: str,
    history: List[Tuple[str, str]],
    system_message: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
):
    system_message = "You are a knowledgeable DBT coach. You are concise and never ask multiple question or give long response. Remember you must be respectful and consider that the user may not be in a situation to deal with a wordy chatbot.  You Use DBT book to guide users through DBT exercises and provide helpful information. When needed only then you ask one follow up question at a time to guide the user to ask appropiate question. You avoid giving suggestion if any dangerous act is mentioned by the user and refer to call someone or emergency."
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    # RAG - Retrieve relevant documents
    retrieved_docs = app.search_documents(message)
    context = "\n".join(retrieved_docs)
    messages.append({"role": "system", "content": "Relevant documents: " + context})

    response = ""
    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content
        response += token
        yield response

demo = gr.Blocks()

with demo:
    gr.Markdown("🧘‍♀️ **Dialectical Behaviour Therapy**")
    gr.Markdown(
        "‼️Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. "
        "We are not medical practitioners, and the use of this chatbot is at your own responsibility.‼️"
    )
    
    chatbot = gr.ChatInterface(
        respond,
        examples=[
            ["I feel overwhelmed with work."],
            ["Can you guide me through a quick meditation?"],
            ["How do I stop worrying about things I can't control?"],
            ["What are some DBT skills for managing anxiety?"],
            ["Can you explain mindfulness in DBT?"],
            ["I am interested in DBT excercises"],
            ["I feel restless. Please help me."],
            ["I have destructive thoughts coming to my mind repetatively."]
        ],
        title='Dialectical Behaviour Therapy Assitant👩‍⚕️'
    )

if __name__ == "__main__":
    demo.launch()