File size: 6,382 Bytes
aa89853
 
 
 
 
 
 
 
 
 
 
 
 
3994ed5
 
 
aa89853
ac3b4d0
aa89853
 
 
 
3994ed5
aa89853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3994ed5
 
 
 
aa89853
 
 
 
 
 
 
 
 
3994ed5
aa89853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3994ed5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import yaml
import fitz
import torch
import gradio as gr
from PIL import Image
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from langchain.llms import HuggingFacePipeline
from langchain.chains import ConversationalRetrievalChain
from langchain.document_loaders import PyPDFLoader
from langchain.prompts import PromptTemplate
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

# Store the Hugging Face token in a variable
HUGGINGFACE_TOKEN = gr.Textbox()

class PDFChatBot:
    def __init__(self, config_path="config.yaml"):
        """
        Initialize the PDFChatBot instance.

        Parameters:
            config_path (str): Path to the configuration file (default is "config.yaml").
        """
        self.processed = False
        self.page = 0
        self.chat_history = []
        self.config = self.load_config(config_path)
        # Initialize other attributes to None
        self.prompt = None
        self.documents = None
        self.embeddings = None
        self.vectordb = None
        self.tokenizer = None
        self.model = None
        self.pipeline = None
        self.chain = None

    def load_config(self, file_path):
        """
        Load configuration from a YAML file.

        Parameters:
            file_path (str): Path to the YAML configuration file.

        Returns:
            dict: Configuration as a dictionary.
        """
        with open(file_path, 'r') as stream:
            try:
                config = yaml.safe_load(stream)
                return config
            except yaml.YAMLError as exc:
                print(f"Error loading configuration: {exc}")
                return None

    def add_text(self, history, text):
        """
        Add user-entered text to the chat history.

        Parameters:
            history (list): List of chat history tuples.
            text (str): User-entered text.

        Returns:
            list: Updated chat history.
        """
        if not text:
            raise gr.Error('Enter text')
        history.append((text, ''))
        return history

    def create_prompt_template(self):
        """
        Create a prompt template for the chatbot.
        """
        template = (
            f"The assistant should provide detailed explanations."
            "Combine the chat history and follow up question into "
            "Follow up question: What is this"
        )
        self.prompt = PromptTemplate.from_template(template)

    def load_embeddings(self):
        """
        Load embeddings from Hugging Face and set in the config file.
        """
        self.embeddings = HuggingFaceEmbeddings(model_name=self.config.get("modelEmbeddings"))

    def load_vectordb(self):
        """
        Load the vector database from the documents and embeddings.
        """
        self.vectordb = Chroma.from_documents(self.documents, self.embeddings)

    def load_tokenizer(self):
        """
        Load the tokenizer from Hugging Face and set in the config file.
        """
        self.tokenizer = AutoTokenizer.from_pretrained(
            self.config.get("autoTokenizer"),
            use_auth_token=HUGGINGFACE_TOKEN
        )

    def load_model(self):
        """
        Load the causal language model from Hugging Face and set in the config file.
        """
        self.model = AutoModelForCausalLM.from_pretrained(
            self.config.get("autoModelForCausalLM"),
            device_map='auto',
            torch_dtype=torch.float32,
            use_auth_token=HUGGINGFACE_TOKEN,
            load_in_8bit=False
        )

    def create_pipeline(self):
        """
        Create a pipeline for text generation using the loaded model and tokenizer.
        """
        pipe = pipeline(
            model=self.model,
            task='text-generation',
            tokenizer=self.tokenizer,
            max_new_tokens=200
        )
        self.pipeline = HuggingFacePipeline(pipeline=pipe)

    def create_chain(self):
        """
        Create a Conversational Retrieval Chain
        """
        self.chain = ConversationalRetrievalChain.from_llm(
            self.pipeline,
            chain_type="stuff",
            retriever=self.vectordb.as_retriever(search_kwargs={"k": 1}),
            condense_question_prompt=self.prompt,
            return_source_documents=True
        )

    def process_file(self, file):
        """
        Process the uploaded PDF file and initialize necessary components: Tokenizer, VectorDB and LLM.

        Parameters:
            file (FileStorage): The uploaded PDF file.
        """
        self.create_prompt_template()
        self.documents = PyPDFLoader(file.name).load()
        self.load_embeddings()
        self.load_vectordb()
        self.load_tokenizer()
        self.load_model()
        self.create_pipeline()
        self.create_chain()

    def generate_response(self, history, query, file):
        """
        Generate a response based on user query and chat history.

        Parameters:
            history (list): List of chat history tuples.
            query (str): User's query.
            file (FileStorage): The uploaded PDF file.

        Returns:
            tuple: Updated chat history and a space.
        """
        if not query:
            raise gr.Error(message='Submit a question')
        if not file:
            raise gr.Error(message='Upload a PDF')
        if not self.processed:
            self.process_file(file)
            self.processed = True

        result = self.chain({"question": query, 'chat_history': self.chat_history}, return_only_outputs=True)
        self.chat_history.append((query, result["answer"]))
        self.page = list(result['source_documents'][0])[1][1]['page']

        for char in result['answer']:
            history[-1][-1] += char
        return history, " "

    def render_file(self, file):
        """
        Renders a specific page of a PDF file as an image.

        Parameters:
            file (FileStorage): The PDF file.

        Returns:
            PIL.Image.Image: The rendered page as an image.
        """
        doc = fitz.open(file.name)
        page = doc[self.page]
        pix = page.get_pixmap(matrix=fitz.Matrix(300 / 72, 300 / 72))
        image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples)
        return image