File size: 4,957 Bytes
9105d7e 981469a 7279d6d 981469a 7279d6d 6bc96c2 7279d6d 9105d7e 7279d6d 8f7a4d5 7279d6d 9105d7e 7279d6d 9105d7e 7279d6d 8f7a4d5 7279d6d 8f7a4d5 7279d6d 8f7a4d5 7279d6d 9105d7e 7279d6d 8f7a4d5 7279d6d 8f7a4d5 981469a 8f7a4d5 7279d6d 981469a 8f7a4d5 981469a 7279d6d 9105d7e 7279d6d 9105d7e 7279d6d 9105d7e 7279d6d 9105d7e 7279d6d 9105d7e 7279d6d 6bc96c2 7279d6d 10d05a8 9105d7e 981469a 7279d6d 10d05a8 7279d6d 10d05a8 7279d6d 9105d7e 7279d6d 981469a 6bc96c2 7279d6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
from typing import Any, Tuple
import gradio as gr
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_openai import ChatOpenAI
from langchain_community.document_loaders import PyMuPDFLoader
import fitz
from PIL import Image
import os
import re
import openai
openai.api_key = "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"
def add_text(history, text: str):
if not text:
raise gr.Error("Enter text")
history.append((text, ""))
return history
class MyApp:
def __init__(self) -> None:
self.OPENAI_API_KEY: str = openai.api_key
self.chain = None
self.chat_history: list = []
self.documents = None
self.file_name = None
def __call__(self, file: str) -> ConversationalRetrievalChain:
if self.chain is None:
self.chain = self.build_chain(file)
return self.chain
def process_file(self, file: str) -> Image:
loader = PyMuPDFLoader(file.name)
self.documents = loader.load()
pattern = r"/([^/]+)$"
match = re.search(pattern, file.name)
try:
self.file_name = match.group(1)
except:
self.file_name = os.path.basename(file)
doc = fitz.open(file.name)
page = doc[0]
pix = page.get_pixmap(dpi=150)
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
return image
def build_chain(self, file: str) -> str:
embeddings = OpenAIEmbeddings(openai_api_key=self.OPENAI_API_KEY)
pdfsearch = Chroma.from_documents(
self.documents,
embeddings,
collection_name=self.file_name,
)
self.chain = ConversationalRetrievalChain.from_llm(
ChatOpenAI(temperature=0.0, openai_api_key=self.OPENAI_API_KEY),
retriever=pdfsearch.as_retriever(search_kwargs={"k": 1}),
return_source_documents=True,
)
return "Vector database built successfully!"
def get_response(history, query, file):
if not file:
raise gr.Error(message="Upload a PDF")
chain = app(file)
result = chain(
{"question": query, "chat_history": app.chat_history}, return_only_outputs=True
)
app.chat_history.append((query, result["answer"]))
source_docs = result["source_documents"]
source_texts = []
for doc in source_docs:
source_texts.append(f"Page {doc.metadata['page'] + 1}: {doc.page_content}")
source_texts_str = "\n\n".join(source_texts)
for char in result["answer"]:
history[-1][-1] += char
yield history, "", source_texts_str
def render_file(file) -> Image:
doc = fitz.open(file.name)
page = doc[0]
pix = page.get_pixmap(dpi=150)
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
return image
def purge_chat_and_render_first(file) -> Tuple[Image, list]:
app.chat_history = []
doc = fitz.open(file.name)
page = doc[0]
pix = page.get_pixmap(dpi=150)
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
return image, []
def refresh_chat():
app.chat_history = []
return []
app = MyApp()
with gr.Blocks() as demo:
with gr.Tab("Step 1: Upload PDF"):
btn = gr.UploadButton("📁 Upload a PDF", file_types=[".pdf"])
show_img = gr.Image(label="Uploaded PDF")
with gr.Tab("Step 2: Process File"):
process_btn = gr.Button("Process PDF")
show_img_processed = gr.Image(label="Processed PDF")
with gr.Tab("Step 3: Build Vector Database"):
build_vector_btn = gr.Button("Build Vector Database")
status_text = gr.Textbox(label="Status", value="", interactive=False)
with gr.Tab("Step 4: Ask Questions"):
chatbot = gr.Chatbot(value=[], elem_id="chatbot")
txt = gr.Textbox(
show_label=False,
placeholder="Enter text and press submit",
scale=2
)
submit_btn = gr.Button("Submit", scale=1)
refresh_btn = gr.Button("Refresh Chat", scale=1)
source_texts_output = gr.Textbox(label="Source Texts", interactive=False)
btn.upload(
fn=purge_chat_and_render_first,
inputs=[btn],
outputs=[show_img, chatbot],
)
process_btn.click(
fn=app.process_file,
inputs=[btn],
outputs=[show_img_processed],
)
build_vector_btn.click(
fn=app.build_chain,
inputs=[btn],
outputs=[status_text],
)
submit_btn.click(
fn=add_text,
inputs=[chatbot, txt],
outputs=[chatbot],
queue=False,
).success(
fn=get_response, inputs=[chatbot, txt, btn], outputs=[chatbot, txt, source_texts_output]
)
refresh_btn.click(
fn=refresh_chat,
inputs=[],
outputs=[chatbot],
)
demo.queue()
demo.launch()
|