File size: 5,999 Bytes
bad3068 a6bfbe0 bad3068 a6bfbe0 bad3068 a6bfbe0 bad3068 a6bfbe0 bad3068 a6bfbe0 bad3068 a6bfbe0 bad3068 a6bfbe0 bad3068 a6bfbe0 bad3068 a6bfbe0 bad3068 a6bfbe0 bad3068 a6bfbe0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import os
import gradio as gr
from google.generativeai import GenerativeModel, configure, types
import fitz # PyMuPDF
from sentence_transformers import SentenceTransformer
import numpy as np
import faiss
# Set up the Google API for the Gemini model
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
configure(api_key=GOOGLE_API_KEY)
# Placeholder for the app's state
class MyApp:
def __init__(self) -> None:
self.documents = []
self.embeddings = None
self.index = None
self.load_pdf("THEDIA1.pdf")
self.build_vector_db()
def load_pdf(self, file_path: str) -> None:
"""Extracts text from a PDF file and stores it in the app's documents."""
doc = fitz.open(file_path)
self.documents = []
for page_num in range(len(doc)):
page = doc[page_num]
text = page.get_text()
self.documents.append({"page": page_num + 1, "content": text})
print("PDF processed successfully!")
def build_vector_db(self) -> None:
"""Builds a vector database using the content of the PDF."""
model = SentenceTransformer('all-MiniLM-L6-v2')
self.embeddings = model.encode([doc["content"] for doc in self.documents], show_progress_bar=True)
self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
self.index.add(np.array(self.embeddings))
print("Vector database built successfully!")
def search_documents(self, query: str, k: int = 3) -> List[str]:
"""Searches for relevant documents using vector similarity."""
model = SentenceTransformer('all-MiniLM-L6-v2')
query_embedding = model.encode([query], show_progress_bar=False)
D, I = self.index.search(np.array(query_embedding), k)
results = [self.documents[i]["content"] for i in I[0]]
return results if results else ["No relevant documents found."]
app = MyApp()
def respond(message: str, history: List[Tuple[str, str]]):
system_message = "You are a supportive and empathetic Dialectical Behaviour Therapist assistant. You politely guide users through DBT exercises based on the given DBT book. You must say one thing at a time and ask follow-up questions to continue the chat."
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# RAG - Retrieve relevant documents if the query suggests exercises or specific information
if any(keyword in message.lower() for keyword in ["exercise", "technique", "information", "guide", "help", "how to"]):
retrieved_docs = app.search_documents(message)
context = "\n".join(retrieved_docs)
if context.strip():
messages.append({"role": "system", "content": "Relevant documents: " + context})
model = GenerativeModel("gemini-1.5-pro-latest")
generation_config = types.GenerationConfig(
temperature=0.7,
max_output_tokens=1024
)
response = model.generate_content([message], generation_config=generation_config)
response_content = response[0].text if response else "No response generated."
history.append((message, response_content))
return history, ""
with gr.Blocks() as demo:
gr.Markdown("# 🧘♀️ **Dialectical Behaviour Therapy**")
gr.Markdown(
"‼️Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. "
"We are not medical practitioners, and the use of this chatbot is at your own responsibility."
)
chatbot = gr.Chatbot()
with gr.Row():
txt_input = gr.Textbox(
show_label=False,
placeholder="Type your message here...",
lines=1
)
submit_btn = gr.Button("Submit", scale=1)
refresh_btn = gr.Button("Refresh Chat", scale=1, variant="secondary")
example_questions = [
["What are some techniques to handle distressing situations?"],
["How does DBT help with emotional regulation?"],
["Can you give me an example of an interpersonal effectiveness skill?"],
["I want to practice mindfulness. Can you help me?"],
["I want to practice distraction techniques. What can I do?"],
["How do I plan self-accommodation?"],
["What are some distress tolerance skills?"],
["Can you help me with emotional regulation techniques?"],
["How can I improve my interpersonal effectiveness?"],
["What are some ways to cope with stress using DBT?"],
["Can you guide me through a grounding exercise?"],
["How do I use DBT skills to handle intense emotions?"],
["What are some self-soothing techniques I can practice?"],
["How can I create a sensory-friendly safe space?"],
["Can you help me create a personal crisis plan?"],
["What are some affirmations for neurodivergent individuals?"],
["How can I manage rejection sensitive dysphoria?"],
["Can you guide me through observing with my senses?"],
["What are some accessible mindfulness exercises?"],
["How do I engage my wise mind?"],
["What are some values that I can identify with?"],
["How can I practice mindful appreciation?"],
["What is the STOP skill in distress tolerance?"],
["How can I use the TIPP skill to manage distress?"],
["What are some tips for managing meltdowns?"],
["Can you provide a list of stims that I can use?"],
["How do I improve my environment to reduce distress?"]
]
gr.Examples(examples=example_questions, inputs=[txt_input])
submit_btn.click(fn=respond, inputs=[txt_input, chatbot], outputs=[chatbot, txt_input])
refresh_btn.click(lambda: [], None, chatbot)
if __name__ == "__main__":
demo.launch()
|