File size: 4,415 Bytes
02a466f
1391e84
 
 
 
 
 
 
 
 
 
 
 
 
 
64864b8
1391e84
ddf2da0
e14b6d7
1391e84
 
 
64864b8
1391e84
 
 
 
64864b8
 
 
1391e84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64864b8
 
1391e84
 
 
 
 
 
 
 
 
 
 
 
 
64864b8
1391e84
 
 
 
 
64864b8
1391e84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64864b8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

from typing import Any
import gradio as gr
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma

from langchain.chains import ConversationalRetrievalChain
from langchain_openai import ChatOpenAI

from langchain_community.document_loaders import PyMuPDFLoader

import fitz
from PIL import Image
import os
import re
import openai

openai.api_key = "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"


def add_text(history, text: str):
    if not text:
        raise gr.Error("Enter text")
    history = history + [(text, "")]
    return history


class MyApp:
    def __init__(self) -> None:
        self.OPENAI_API_KEY: str = openai.api_key
        self.chain = None
        self.chat_history: list = []
        self.N: int = 0
        self.count: int = 0

    def __call__(self, file: str) -> Any:
        if self.count == 0:
            self.chain = self.build_chain(file)
            self.count += 1
        return self.chain

    def process_file(self, file: str):
        loader = PyMuPDFLoader(file.name)
        documents = loader.load()
        pattern = r"/([^/]+)$"
        match = re.search(pattern, file.name)
        try:
            file_name = match.group(1)
        except:
            file_name = os.path.basename(file)

        return documents, file_name

    def build_chain(self, file: str):
        documents, file_name = self.process_file(file)
        # Load embeddings model
        embeddings = OpenAIEmbeddings(openai_api_key=self.OPENAI_API_KEY)
        pdfsearch = Chroma.from_documents(
            documents,
            embeddings,
            collection_name=file_name,
        )
        chain = ConversationalRetrievalChain.from_llm(
            ChatOpenAI(temperature=0.0, openai_api_key=self.OPENAI_API_KEY),
            retriever=pdfsearch.as_retriever(search_kwargs={"k": 1}),
            return_source_documents=True,
        )
        return chain


def get_response(history, query, file):
    if not file:
        raise gr.Error(message="Upload a PDF")
    chain = app(file)
    result = chain(
        {"question": query, "chat_history": app.chat_history}, return_only_outputs=True
    )
    app.chat_history += [(query, result["answer"])]
    app.N = list(result["source_documents"][0])[1][1]["page"]
    for char in result["answer"]:
        history[-1][-1] += char
        yield history, ""


def render_file(file):
    doc = fitz.open(file.name)
    page = doc[app.N]
    # Render the page as a PNG image with a resolution of 150 DPI
    pix = page.get_pixmap(dpi=150)
    image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
    return image


def purge_chat_and_render_first(file):
    print("purge_chat_and_render_first")
    # Purges the previous chat session so that the bot has no concept of previous documents
    app.chat_history = []
    app.count = 0

    # Use PyMuPDF to render the first page of the uploaded document
    doc = fitz.open(file.name)
    page = doc[0]
    # Render the page as a PNG image with a resolution of 150 DPI
    pix = page.get_pixmap(dpi=150)
    image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
    return image, []


app = MyApp()

with gr.Blocks() as demo:
    with gr.Column():
        with gr.Row():
            with gr.Column(scale=2):
                with gr.Row():
                    chatbot = gr.Chatbot(value=[], elem_id="chatbot")
                with gr.Row():
                    txt = gr.Textbox(
                        show_label=False,
                        placeholder="Enter text and press submit",
                        scale=2
                    )
                    submit_btn = gr.Button("Submit", scale=1)

            with gr.Column(scale=1):
                with gr.Row():
                    show_img = gr.Image(label="Upload PDF")
                with gr.Row():
                    btn = gr.UploadButton("📁 Upload a PDF", file_types=[".pdf"])

    btn.upload(
        fn=purge_chat_and_render_first,
        inputs=[btn],
        outputs=[show_img, chatbot],
    )

    submit_btn.click(
        fn=add_text,
        inputs=[chatbot, txt],
        outputs=[
            chatbot,
        ],
        queue=False,
    ).success(
        fn=get_response, inputs=[chatbot, txt, btn], outputs=[chatbot, txt]
    ).success(
        fn=render_file, inputs=[btn], outputs=[show_img]
    )

demo.queue()
demo.launch()