RAGBOT / app.py
Rahatara's picture
Update app.py
6d2d6ff verified
raw
history blame
5.39 kB
from typing import Any, List, Tuple
import gradio as gr
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_openai import ChatOpenAI
from langchain_community.document_loaders import PyMuPDFLoader
import fitz
from PIL import Image
import os
import re
import openai
openai.api_key = "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"
def add_text(history: List[Tuple[str, str]], text: str) -> List[Tuple[str, str]]:
if not text:
raise gr.Error("Enter text")
history.append((text, ""))
return history
class MyApp:
def __init__(self) -> None:
self.OPENAI_API_KEY: str = openai.api_key
self.chain = None
self.chat_history: list = []
self.documents = None
self.file_name = None
def __call__(self, file: str) -> ConversationalRetrievalChain:
if self.chain is None:
self.chain = self.build_chain(file)
return self.chain
def process_file(self, file) -> Image.Image:
loader = PyMuPDFLoader(file.name)
self.documents = loader.load()
pattern = r"/([^/]+)$"
match = re.search(pattern, file.name)
try:
self.file_name = match.group(1)
except:
self.file_name = os.path.basename(file)
doc = fitz.open(file.name)
page = doc[0]
pix = page.get_pixmap(dpi=150)
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
return image
def build_chain(self, file) -> str:
embeddings = OpenAIEmbeddings(openai_api_key=self.OPENAI_API_KEY)
pdfsearch = Chroma.from_documents(
self.documents,
embeddings,
collection_name=self.file_name,
)
self.chain = ConversationalRetrievalChain.from_llm(
ChatOpenAI(temperature=0.0, openai_api_key=self.OPENAI_API_KEY),
retriever=pdfsearch.as_retriever(search_kwargs={"k": 1}),
return_source_documents=True,
)
return "Vector database built successfully!"
def get_response(history, query, file):
if not file:
raise gr.Error(message="Upload a PDF")
chain = app(file)
try:
result = chain.invoke(
{"question": query, "chat_history": app.chat_history}
)
app.chat_history.append((query, result["answer"]))
source_docs = result["source_documents"]
source_texts = []
for doc in source_docs:
source_texts.append(f"Page {doc.metadata['page'] + 1}: {doc.page_content}")
source_texts_str = "\n\n".join(source_texts)
for char in result["answer"]:
history[-1][-1] += char
return history, source_texts_str
except Exception:
app.chat_history.append((query, "I have no information about it. Feed me knowledge, please!"))
return history, "I have no information about it. Feed me knowledge, please!"
def render_file(file) -> Image.Image:
doc = fitz.open(file.name)
page = doc[0]
pix = page.get_pixmap(dpi=150)
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
return image
def purge_chat_and_render_first(file) -> Tuple[Image.Image, list]:
app.chat_history = []
doc = fitz.open(file.name)
page = doc[0]
pix = page.get_pixmap(dpi=150)
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
return image, []
def refresh_chat():
app.chat_history = []
return []
app = MyApp()
with gr.Blocks() as demo:
with gr.Tab("Step 1: Upload PDF"):
btn = gr.UploadButton("📁 Upload a PDF", file_types=[".pdf"])
show_img = gr.Image(label="Uploaded PDF")
with gr.Tab("Step 2: Process File"):
process_btn = gr.Button("Process PDF")
show_img_processed = gr.Image(label="Processed PDF")
process_status = gr.Textbox(label="Processing Status", interactive=False)
with gr.Tab("Step 3: Build Vector Database"):
build_vector_btn = gr.Button("Build Vector Database")
status_text = gr.Textbox(label="Status", value="", interactive=False)
with gr.Tab("Step 4: Ask Questions"):
chatbot = gr.Chatbot(elem_id="chatbot")
txt = gr.Textbox(
show_label=False,
placeholder="Enter text and press submit",
scale=2
)
submit_btn = gr.Button("Submit", scale=1)
refresh_btn = gr.Button("Refresh Chat", scale=1)
source_texts_output = gr.Textbox(label="Source Texts", interactive=False)
btn.upload(
fn=purge_chat_and_render_first,
inputs=[btn],
outputs=[show_img, chatbot],
)
process_btn.click(
fn=lambda file: (app.process_file(file), "Processing complete!"),
inputs=[btn],
outputs=[show_img_processed, process_status],
)
build_vector_btn.click(
fn=app.build_chain,
inputs=[btn],
outputs=[status_text],
)
submit_btn.click(
fn=add_text,
inputs=[chatbot, txt],
outputs=[chatbot],
queue=False,
).success(
fn=get_response, inputs=[chatbot, txt, btn], outputs=[chatbot, source_texts_output]
)
refresh_btn.click(
fn=refresh_chat,
inputs=[],
outputs=[chatbot],
)
demo.queue()
demo.launch()