RAGBOT / app.py
Rahatara's picture
Create app.py
56a2342 verified
raw
history blame
3.78 kB
import os
import gradio as gr
import fitz # PyMuPDF
from sentence_transformers import SentenceTransformer
import numpy as np
import faiss
from typing import List, Tuple, Dict
# Placeholder for the app's state
class MyApp:
def __init__(self) -> None:
self.documents = []
self.embeddings = None
self.index = None
self.model = SentenceTransformer('all-MiniLM-L6-v2')
def load_pdfs(self, files: List[gr.File]) -> str:
"""Extracts text from multiple PDF files and stores them."""
self.documents = []
for file in files:
doc = fitz.open(stream=file.read(), filetype="pdf")
for page_num in range(len(doc)):
page = doc[page_num]
text = page.get_text()
self.documents.append({
"file_name": file.name,
"page": page_num + 1,
"content": text
})
return f"Processed {len(files)} PDFs successfully!"
def build_vector_db(self) -> str:
"""Builds a vector database using the content of the PDFs."""
if not self.documents:
return "No documents to process."
contents = [doc["content"] for doc in self.documents]
self.embeddings = self.model.encode(contents, show_progress_bar=True)
self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
self.index.add(np.array(self.embeddings))
return "Vector database built successfully!"
def search_documents(self, query: str, k: int = 3) -> List[Dict]:
"""Searches for relevant document snippets using vector similarity."""
if not self.index:
return [{"content": "Vector database is not built."}]
query_embedding = self.model.encode([query], show_progress_bar=False)
D, I = self.index.search(np.array(query_embedding), k)
results = [self.documents[i] for i in I[0]]
return results if results else [{"content": "No relevant documents found."}]
app = MyApp()
def upload_files(files: List[gr.File]) -> str:
return app.load_pdfs(files)
def build_vector_db() -> str:
return app.build_vector_db()
def respond(message: str, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], str]:
# Retrieve relevant documents
retrieved_docs = app.search_documents(message)
context = "\n".join(
[f"File: {doc['file_name']}, Page: {doc['page']}\n{doc['content']}" for doc in retrieved_docs]
)
# Generate response (Placeholder for actual model inference)
response_content = f"Simulated response based on the following context:\n{context}"
# Append the message and generated response to the chat history
history.append((message, response_content))
return history, ""
with gr.Blocks() as demo:
gr.Markdown("# PDF Chatbot")
gr.Markdown("Upload your PDFs, build a vector database, and start querying your documents.")
with gr.Row():
with gr.Column():
upload_btn = gr.File(label="Upload PDFs", file_types=[".pdf"], file_count="multiple")
upload_message = gr.Textbox(label="Upload Status", lines=2)
build_db_btn = gr.Button("Build Vector Database")
db_message = gr.Textbox(label="DB Build Status", lines=2)
upload_btn.change(upload_files, inputs=[upload_btn], outputs=[upload_message])
build_db_btn.click(build_vector_db, inputs=[], outputs=[db_message])
with gr.Column():
chatbot = gr.Chatbot(label="Chat Responses")
query_input = gr.Textbox(label="Enter your query here")
submit_btn = gr.Button("Submit")
submit_btn.click(respond, inputs=[query_input, chatbot], outputs=[chatbot, query_input])
demo.launch()