RAGBOT / app.py
Rahatara's picture
Update app.py
a2ac156 verified
raw
history blame
6.94 kB
import os
import gradio as gr
from google.generativeai import GenerativeModel, configure, types
import fitz # PyMuPDF
from sentence_transformers import SentenceTransformer
import numpy as np
import faiss
from typing import List, Tuple # Make sure to import List and Tuple
# Set up the Google API for the Gemini model
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
configure(api_key=GOOGLE_API_KEY)
# Placeholder for the app's state
class MyApp:
def __init__(self) -> None:
self.documents = []
self.embeddings = None
self.index = None
self.load_pdf("THEDIA1.pdf")
self.build_vector_db()
def load_pdf(self, file_path: str) -> None:
"""Extracts text from a PDF file and stores it in the app's documents."""
doc = fitz.open(file_path)
self.documents = []
for page_num in range(len(doc)):
page = doc[page_num]
text = page.get_text()
self.documents.append({"page": page_num + 1, "content": text})
print("PDF processed successfully!")
def build_vector_db(self) -> None:
"""Builds a vector database using the content of the PDF."""
model = SentenceTransformer('all-MiniLM-L6-v2')
self.embeddings = model.encode([doc["content"] for doc in self.documents], show_progress_bar=True)
self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
self.index.add(np.array(self.embeddings))
print("Vector database built successfully!")
def search_documents(self, query: str, k: int = 3) -> List[str]:
"""Searches for relevant documents using vector similarity."""
model = SentenceTransformer('all-MiniLM-L6-v2')
query_embedding = model.encode([query], show_progress_bar=False)
D, I = self.index.search(np.array(query_embedding), k)
results = [self.documents[i]["content"] for i in I[0]]
return results if results else ["No relevant documents found."]
app = MyApp()
def respond(message: str, history: List[Tuple[str, str]]):
system_message = (
"You are a supportive and empathetic Dialectical Behaviour Therapist assistant. "
"You politely guide users through DBT exercises based on the given DBT book. "
"You must say one thing at a time and ask follow-up questions to continue the chat."
)
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# RAG - Retrieve relevant documents if the query suggests exercises or specific information
if any(
keyword in message.lower()
for keyword in ["exercise", "technique", "information", "guide", "help", "how to"]
):
retrieved_docs = app.search_documents(message)
context = "\n".join(retrieved_docs)
if context.strip():
messages.append({"role": "system", "content": "Relevant documents: " + context})
# Generate response using the generative model
model = GenerativeModel("gemini-1.5-pro-latest")
generation_config = types.GenerationConfig(
temperature=0.7,
max_output_tokens=1024,
)
try:
response = model.generate_content([message], generation_config=generation_config)
# Properly access the response content
response_content = response.text if hasattr(response, "text") else "No response generated."
except Exception as e:
response_content = f"An error occurred while generating the response: {str(e)}"
# Append the message and generated response to the chat history
history.append((message, response_content))
return history, ""
def old_respond(message: str, history: List[Tuple[str, str]]):
system_message = "You are a supportive and empathetic Dialectical Behaviour Therapist assistant. You politely guide users through DBT exercises based on the given DBT book. You must say one thing at a time and ask follow-up questions to continue the chat."
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# RAG - Retrieve relevant documents if the query suggests exercises or specific information
if any(keyword in message.lower() for keyword in ["exercise", "technique", "information", "guide", "help", "how to"]):
retrieved_docs = app.search_documents(message)
context = "\n".join(retrieved_docs)
if context.strip():
messages.append({"role": "system", "content": "Relevant documents: " + context})
model = GenerativeModel("gemini-1.5-pro-latest")
generation_config = types.GenerationConfig(
temperature=0.7,
max_output_tokens=1024
)
response = model.generate_content([message], generation_config=generation_config)
response_content = response[0].text if response else "No response generated."
history.append((message, response_content))
return history, ""
with gr.Blocks() as demo:
gr.Markdown("# 🧘‍♀️ **Dialectical Behaviour Therapy**")
gr.Markdown(
"‼️Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. "
"We are not medical practitioners, and the use of this chatbot is at your own responsibility."
)
chatbot = gr.Chatbot()
with gr.Row():
txt_input = gr.Textbox(
show_label=False,
placeholder="",
lines=1
)
submit_btn = gr.Button("Submit", scale=1)
refresh_btn = gr.Button("Refresh Chat", scale=1, variant="secondary")
example_questions = [
["What are some techniques to handle distressing situations?"],
["How does DBT help with emotional regulation?"],
["Can you give me an example of an interpersonal effectiveness skill?"],
["I want to practice mindfulness. Can you help me?"],
["I want to practice distraction techniques. What can I do?"],
["How do I plan self-accommodation?"],
["What are some distress tolerance skills?"],
["Can you help me with emotional regulation techniques?"],
["How can I improve my interpersonal effectiveness?"],
["What are some ways to cope with stress using DBT?"],
["Can you guide me through a grounding exercise?"]
]
gr.Examples(examples=example_questions, inputs=[txt_input])
submit_btn.click(fn=respond, inputs=[txt_input, chatbot], outputs=[chatbot, txt_input])
refresh_btn.click(lambda: [], None, chatbot)
if __name__ == "__main__":
demo.launch()