Rahatara commited on
Commit
038b467
·
verified ·
1 Parent(s): 93223a4

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +136 -0
app.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+ from typing import List, Tuple
4
+ import fitz # PyMuPDF
5
+ from sentence_transformers import SentenceTransformer, util
6
+ import numpy as np
7
+ import faiss
8
+
9
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
10
+
11
+ # Placeholder for the app's state
12
+ class MyApp:
13
+ def __init__(self) -> None:
14
+ self.documents = []
15
+ self.embeddings = None
16
+ self.index = None
17
+ self.load_pdf("THEDIA1.pdf")
18
+ self.build_vector_db()
19
+
20
+ def load_pdf(self, file_path: str) -> None:
21
+ """Extracts text from a PDF file and stores it in the app's documents."""
22
+ doc = fitz.open(file_path)
23
+ self.documents = []
24
+ for page_num in range(len(doc)):
25
+ page = doc[page_num]
26
+ text = page.get_text()
27
+ self.documents.append({"page": page_num + 1, "content": text})
28
+ print("PDF processed successfully!")
29
+
30
+ def build_vector_db(self) -> None:
31
+ """Builds a vector database using the content of the PDF."""
32
+ model = SentenceTransformer('all-MiniLM-L6-v2')
33
+ self.embeddings = model.encode([doc["content"] for doc in self.documents])
34
+ self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
35
+ self.index.add(np.array(self.embeddings))
36
+ print("Vector database built successfully!")
37
+
38
+ def search_documents(self, query: str, k: int = 3) -> List[str]:
39
+ """Searches for relevant documents using vector similarity."""
40
+ model = SentenceTransformer('all-MiniLM-L6-v2')
41
+ query_embedding = model.encode([query])
42
+ D, I = self.index.search(np.array(query_embedding), k)
43
+ results = [self.documents[i]["content"] for i in I[0]]
44
+ return results if results else ["No relevant documents found."]
45
+
46
+ app = MyApp()
47
+
48
+ def preprocess_input(user_input: str) -> str:
49
+ """Preprocesses user input to enhance it for better context."""
50
+ if "therapy" in user_input.lower():
51
+ return "I am looking for guidance on therapy. Can you help me with some exercises or techniques to manage my stress and emotions?"
52
+ # Add more rules as needed
53
+ return user_input
54
+
55
+ def preprocess_response(response: str) -> str:
56
+ """Preprocesses the response to make it more polished."""
57
+ response = response.strip()
58
+ response = response.replace("\n\n", "\n")
59
+ response = response.replace(" ,", ",")
60
+ response = response.replace(" .", ".")
61
+ response = " ".join(response.split())
62
+ return response
63
+
64
+ def shorten_response(response: str) -> str:
65
+ """Uses the Zephyr model to shorten and refine the response."""
66
+ messages = [{"role": "system", "content": "Shorten and refine this response."}, {"role": "user", "content": response}]
67
+ result = client.chat_completion(messages, max_tokens=256, temperature=0.5, top_p=0.9)
68
+ return result.choices[0].message['content'].strip()
69
+
70
+ def respond(message: str, history: List[Tuple[str, str]]):
71
+ system_message = "You are a concisely speaking empathetic Dialectical Behaviour Therapist assistant. You politely guide users through DBT exercises based on the given DBT book. You must say one thing at a time and ask follow-up questions to continue the chat."
72
+ messages = [{"role": "system", "content": system_message}]
73
+
74
+ for val in history:
75
+ if val[0]:
76
+ messages.append({"role": "user", "content": val[0]})
77
+ if val[1]:
78
+ messages.append({"role": "assistant", "content": val[1]})
79
+
80
+ # Preprocess user input
81
+ preprocessed_message = preprocess_input(message)
82
+ messages.append({"role": "user", "content": preprocessed_message})
83
+
84
+ # RAG - Retrieve relevant documents
85
+ retrieved_docs = app.search_documents(preprocessed_message)
86
+ context = "\n".join(retrieved_docs)
87
+ if context.strip():
88
+ messages.append({"role": "system", "content": "Relevant documents: " + context})
89
+
90
+ response = client.chat_completion(messages, max_tokens=1024, temperature=0.7, top_p=0.9)
91
+ response_content = "".join([choice.delta.content for choice in response.choices if choice.delta.content])
92
+
93
+ polished_response = preprocess_response(response_content)
94
+ shortened_response = shorten_response(polished_response)
95
+
96
+ history.append((message, shortened_response))
97
+ return history, ""
98
+
99
+ with gr.Blocks() as demo:
100
+ gr.Markdown("# 🧘‍♀️ **Dialectical Behaviour Therapy**")
101
+ gr.Markdown(
102
+ "‼️Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. "
103
+ "We are not medical practitioners, and the use of this chatbot is at your own responsibility."
104
+ )
105
+
106
+ chatbot = gr.Chatbot()
107
+
108
+ with gr.Row():
109
+ txt_input = gr.Textbox(
110
+ show_label=False,
111
+ placeholder="Type your message here...",
112
+ lines=1
113
+ )
114
+ submit_btn = gr.Button("Submit", scale=1)
115
+ refresh_btn = gr.Button("Refresh Chat", scale=1, variant="secondary")
116
+
117
+ example_questions = [
118
+ ["I feel overwhelmed with work."],
119
+ ["Can you guide me through a quick meditation?"],
120
+ ["How do I stop worrying about things I can't control?"],
121
+ ["What are some DBT skills for managing anxiety?"],
122
+ ["Can you explain mindfulness in DBT?"],
123
+ ["What is radical acceptance?"],
124
+ ["How can I practice distress tolerance?"],
125
+ ["What are some techniques to handle distressing situations?"],
126
+ ["How does DBT help with emotional regulation?"],
127
+ ["Can you give me an example of an interpersonal effectiveness skill?"]
128
+ ]
129
+
130
+ gr.Examples(examples=example_questions, inputs=[txt_input])
131
+
132
+ submit_btn.click(respond, [txt_input, chatbot], [chatbot, txt_input])
133
+ refresh_btn.click(lambda: [], None, chatbot)
134
+
135
+ if __name__ == "__main__":
136
+ demo.launch()