Rahatara commited on
Commit
047d48b
1 Parent(s): d35ea3f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +116 -0
app.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+ from typing import List, Tuple
4
+ import fitz # PyMuPDF
5
+ from sentence_transformers import SentenceTransformer, util
6
+ import numpy as np
7
+ import faiss
8
+
9
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
10
+
11
+ # Placeholder for the app's state
12
+ class MyApp:
13
+ def __init__(self) -> None:
14
+ self.documents = []
15
+ self.embeddings = None
16
+ self.index = None
17
+ self.load_pdf("THEDIA1.pdf")
18
+ self.build_vector_db()
19
+
20
+ def load_pdf(self, file_path: str) -> None:
21
+ """Extracts text from a PDF file and stores it in the app's documents."""
22
+ doc = fitz.open(file_path)
23
+ self.documents = []
24
+ for page_num in range(len(doc)):
25
+ page = doc[page_num]
26
+ text = page.get_text()
27
+ self.documents.append({"page": page_num + 1, "content": text})
28
+ print("PDF processed successfully!")
29
+
30
+ def build_vector_db(self) -> None:
31
+ """Builds a vector database using the content of the PDF."""
32
+ model = SentenceTransformer('all-MiniLM-L6-v2')
33
+ self.embeddings = model.encode([doc["content"] for doc in self.documents])
34
+ self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
35
+ self.index.add(np.array(self.embeddings))
36
+ print("Vector database built successfully!")
37
+
38
+ def search_documents(self, query: str, k: int = 3) -> List[str]:
39
+ """Searches for relevant documents using vector similarity."""
40
+ model = SentenceTransformer('all-MiniLM-L6-v2')
41
+ query_embedding = model.encode([query])
42
+ D, I = self.index.search(np.array(query_embedding), k)
43
+ results = [self.documents[i]["content"] for i in I[0]]
44
+ return results if results else ["No relevant documents found."]
45
+
46
+ app = MyApp()
47
+
48
+ def respond(
49
+ message: str,
50
+ history: List[Tuple[str, str]],
51
+ system_message: str,
52
+ max_tokens: int,
53
+ temperature: float,
54
+ top_p: float,
55
+ ):
56
+ system_message = (
57
+ "You are a professional DBT counselor. You provide thoughtful and supportive responses. "
58
+ "Ensure your replies are empathetic, guide users through DBT exercises, and provide relevant "
59
+ "information without overwhelming them. Ask one question at a time and avoid giving too many "
60
+ "options in a single response."
61
+ )
62
+ messages = [{"role": "system", "content": system_message}]
63
+
64
+ for val in history:
65
+ if val[0]:
66
+ messages.append({"role": "user", "content": val[0]})
67
+ if val[1]:
68
+ messages.append({"role": "assistant", "content": val[1]})
69
+
70
+ messages.append({"role": "user", "content": message})
71
+
72
+ # RAG - Retrieve relevant documents
73
+ retrieved_docs = app.search_documents(message)
74
+ context = "\n".join(retrieved_docs)
75
+ messages.append({"role": "system", "content": "Relevant documents: " + context})
76
+
77
+ response = ""
78
+ for message in client.chat_completion(
79
+ messages,
80
+ max_tokens=max_tokens,
81
+ stream=True,
82
+ temperature=temperature,
83
+ top_p=top_p,
84
+ ):
85
+ token = message.choices[0].delta.content
86
+ response += token
87
+ yield response
88
+
89
+ demo = gr.Blocks()
90
+
91
+ with demo:
92
+
93
+ gr.Markdown(
94
+ ‼️"Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. "
95
+ "We are not medical practitioners, and the use of this chatbot is at your own responsibility."
96
+ )
97
+
98
+ chatbot = gr.ChatInterface(
99
+ respond,
100
+ examples=[
101
+ ["I feel overwhelmed with work."],
102
+ ["Can you guide me through a quick meditation?"],
103
+ ["How do I stop worrying about things I can't control?"],
104
+ ["What are some DBT skills for managing anxiety?"],
105
+ ["Can you explain mindfulness in DBT?"],
106
+ ["What is radical acceptance?"],
107
+ ["How can I practice distress tolerance?"],
108
+ ["What are some techniques to handle distressing situations?"],
109
+ ["How does DBT help with emotional regulation?"],
110
+ ["Can you give me an example of an interpersonal effectiveness skill?"]
111
+ ],
112
+ title='DBT Coach 👩‍⚕️'
113
+ )
114
+
115
+ if __name__ == "__main__":
116
+ demo.launch()