Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
|
4 |
from langchain_community.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain_community.vectorstores import Chroma
|
@@ -19,6 +18,27 @@ import torch
|
|
19 |
import tqdm
|
20 |
import accelerate
|
21 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
|
24 |
|
@@ -282,15 +302,6 @@ def demo():
|
|
282 |
qa_chain = gr.State()
|
283 |
collection_name = gr.State()
|
284 |
|
285 |
-
gr.Markdown(
|
286 |
-
"""<center><h2>PDF-based chatbot</center></h2>
|
287 |
-
<h3>Ask any questions about your PDF documents</h3>""")
|
288 |
-
gr.Markdown(
|
289 |
-
"""<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
|
290 |
-
The user interface explicitely shows multiple steps to help understand the RAG workflow.
|
291 |
-
This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
|
292 |
-
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
|
293 |
-
""")
|
294 |
|
295 |
with gr.Tab("Step 1 - Upload PDF"):
|
296 |
with gr.Row():
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
3 |
from langchain_community.document_loaders import PyPDFLoader
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain_community.vectorstores import Chroma
|
|
|
18 |
import tqdm
|
19 |
import accelerate
|
20 |
import re
|
21 |
+
from huggingface_hub import login, HfApi
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
# Authenticate using the Hugging Face token stored as a secret
|
26 |
+
def authenticate_hf():
|
27 |
+
token = os.getenv("HUGGINGFACE_TOKEN")
|
28 |
+
if not token:
|
29 |
+
raise ValueError("Hugging Face token not found in environment variables.")
|
30 |
+
|
31 |
+
try:
|
32 |
+
login(token=token)
|
33 |
+
api = HfApi()
|
34 |
+
user_info = api.whoami(token=token)
|
35 |
+
print(f"Login successful. User info: {user_info}")
|
36 |
+
except Exception as e:
|
37 |
+
raise ValueError(f"Error during login: {e}")
|
38 |
+
|
39 |
+
# Authenticate at the start of the script
|
40 |
+
authenticate_hf()
|
41 |
+
|
42 |
|
43 |
|
44 |
|
|
|
302 |
qa_chain = gr.State()
|
303 |
collection_name = gr.State()
|
304 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
|
306 |
with gr.Tab("Step 1 - Upload PDF"):
|
307 |
with gr.Row():
|