Rahatara commited on
Commit
35497a1
1 Parent(s): 0000e40

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +127 -0
app.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+ from typing import List, Tuple
4
+ import fitz # PyMuPDF
5
+ from sentence_transformers import SentenceTransformer, util
6
+ import numpy as np
7
+ import faiss
8
+
9
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
10
+
11
+ # Placeholder for the app's state
12
+ class MyApp:
13
+ def __init__(self) -> None:
14
+ self.documents = []
15
+ self.embeddings = None
16
+ self.index = None
17
+ self.load_pdf("THEDIA1.pdf")
18
+ self.build_vector_db()
19
+
20
+ def load_pdf(self, file_path: str) -> None:
21
+ """Extracts text from a PDF file and stores it in the app's documents."""
22
+ doc = fitz.open(file_path)
23
+ self.documents = []
24
+ for page_num in range(len(doc)):
25
+ page = doc[page_num]
26
+ text = page.get_text()
27
+ self.documents.append({"page": page_num + 1, "content": text})
28
+ print("PDF processed successfully!")
29
+
30
+ def build_vector_db(self) -> None:
31
+ """Builds a vector database using the content of the PDF."""
32
+ model = SentenceTransformer('all-MiniLM-L6-v2')
33
+ self.embeddings = model.encode([doc["content"] for doc in self.documents])
34
+ self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
35
+ self.index.add(np.array(self.embeddings))
36
+ print("Vector database built successfully!")
37
+
38
+ def search_documents(self, query: str, k: int = 3) -> List[str]:
39
+ """Searches for relevant documents using vector similarity."""
40
+ model = SentenceTransformer('all-MiniLM-L6-v2')
41
+ query_embedding = model.encode([query])
42
+ D, I = self.index.search(np.array(query_embedding), k)
43
+ results = [self.documents[i]["content"] for i in I[0]]
44
+ return results if results else ["No relevant documents found."]
45
+
46
+ app = MyApp()
47
+
48
+ def respond(
49
+ message: str,
50
+ history: List[Tuple[str, str]],
51
+ system_message: str,
52
+ max_tokens: int,
53
+ temperature: float,
54
+ top_p: float,
55
+ ):
56
+ system_message = (
57
+ "You are a knowledgeable DBT (Dialectical Behavior Therapy) coach. You greet users warmly and ask questions like a real counselor. "
58
+ "You are concise, respectful, and a good listener. You use the DBT book to guide users through DBT exercises and provide helpful information. "
59
+ "When needed, you ask one follow-up question at a time to guide the user to ask appropriate questions. "
60
+ "You avoid giving suggestions if any dangerous act is mentioned by the user and refer them to call someone or emergency services. "
61
+ "Your responses are accurate and concise, and you maintain a professional and supportive tone throughout."
62
+ )
63
+
64
+ messages = [{"role": "system", "content": system_message}]
65
+
66
+ for val in history:
67
+ if val[0]:
68
+ messages.append({"role": "user", "content": val[0]})
69
+ if val[1]:
70
+ messages.append({"role": "assistant", "content": val[1]})
71
+
72
+ messages.append({"role": "user", "content": message})
73
+
74
+ # RAG - Retrieve relevant documents
75
+ try:
76
+ retrieved_docs = app.search_documents(message)
77
+ context = "\n".join(retrieved_docs)
78
+ messages.append({"role": "system", "content": "Relevant documents: " + context})
79
+
80
+ response = ""
81
+ response_buffer = []
82
+ for message in client.chat_completion(
83
+ messages,
84
+ max_tokens=max_tokens,
85
+ stream=True,
86
+ temperature=temperature,
87
+ top_p=top_p,
88
+ ):
89
+ token = message.choices[0].delta.content
90
+ response += token
91
+ response_buffer.append(token)
92
+ if token.endswith('.') or token.endswith('?'):
93
+ yield ''.join(response_buffer)
94
+ response_buffer = []
95
+
96
+ if response_buffer:
97
+ yield ''.join(response_buffer)
98
+
99
+ except Exception as e:
100
+ yield f"An error occurred: {str(e)}"
101
+
102
+ demo = gr.Blocks()
103
+
104
+ with demo:
105
+ gr.Markdown("🧘‍♀️ **Dialectical Behaviour Therapy**")
106
+ gr.Markdown(
107
+ "‼️Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. "
108
+ "We are not medical practitioners, and the use of this chatbot is at your own responsibility.‼️"
109
+ )
110
+
111
+ chatbot = gr.ChatInterface(
112
+ respond,
113
+ examples=[
114
+ ["I feel overwhelmed with work."],
115
+ ["Can you guide me through a quick meditation?"],
116
+ ["How do I stop worrying about things I can't control?"],
117
+ ["What are some DBT skills for managing anxiety?"],
118
+ ["Can you explain mindfulness in DBT?"],
119
+ ["I am interested in DBT exercises"],
120
+ ["I feel restless. Please help me."],
121
+ ["I have destructive thoughts coming to my mind repetitively."]
122
+ ],
123
+ title='Dialectical Behaviour Therapy Assistant👩‍⚕️'
124
+ )
125
+
126
+ if __name__ == "__main__":
127
+ demo.launch()