Rahatara commited on
Commit
780874d
·
verified ·
1 Parent(s): 3e30848

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +193 -0
app.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, List, Tuple
2
+ import gradio as gr
3
+ from langchain_openai import OpenAIEmbeddings
4
+ from langchain_community.vectorstores import Chroma
5
+ from langchain.chains import ConversationalRetrievalChain
6
+ from langchain_openai import ChatOpenAI
7
+ from langchain_community.document_loaders import PyMuPDFLoader
8
+ import fitz
9
+ from PIL import Image
10
+ import os
11
+ import openai
12
+
13
+ # MyApp class to handle the processes
14
+ class MyApp:
15
+ def __init__(self) -> None:
16
+ self.OPENAI_API_KEY: str = None # Initialize with None
17
+ self.chain = None
18
+ self.chat_history: list = []
19
+ self.documents = None
20
+ self.file_name = None
21
+
22
+ def set_api_key(self, api_key: str):
23
+ self.OPENAI_API_KEY = api_key
24
+ openai.api_key = api_key
25
+
26
+ def process_file(self, file) -> Image.Image:
27
+ loader = PyMuPDFLoader(file.name)
28
+ self.documents = loader.load()
29
+ self.file_name = os.path.basename(file.name)
30
+ doc = fitz.open(file.name)
31
+ page = doc[0]
32
+ pix = page.get_pixmap(dpi=150)
33
+ image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
34
+ return image
35
+
36
+ def build_chain(self, file) -> str:
37
+ embeddings = OpenAIEmbeddings(openai_api_key=self.OPENAI_API_KEY)
38
+ pdfsearch = Chroma.from_documents(
39
+ self.documents,
40
+ embeddings,
41
+ collection_name=self.file_name,
42
+ )
43
+ self.chain = ConversationalRetrievalChain.from_llm(
44
+ ChatOpenAI(temperature=0.0, openai_api_key=self.OPENAI_API_KEY),
45
+ retriever=pdfsearch.as_retriever(search_kwargs={"k": 1}),
46
+ return_source_documents=True,
47
+ )
48
+ return "Vector database built successfully!"
49
+
50
+ # Function to add text to chat history
51
+ def add_text(history: List[Tuple[str, str]], text: str) -> List[Tuple[str, str]]:
52
+ if not text:
53
+ raise gr.Error("Enter text")
54
+ history.append((text, ""))
55
+ return history
56
+
57
+ # Function to get response from the model
58
+ def get_response(history, query):
59
+ if app.chain is None:
60
+ raise gr.Error("The chain has not been built yet. Please ensure the vector database is built before querying.")
61
+
62
+ try:
63
+ result = app.chain.invoke(
64
+ {"question": query, "chat_history": app.chat_history}
65
+ )
66
+ app.chat_history.append((query, result["answer"]))
67
+ source_docs = result["source_documents"]
68
+ source_texts = []
69
+ for doc in source_docs:
70
+ source_texts.append(f"Page {doc.metadata['page'] + 1}: {doc.page_content}")
71
+ source_texts_str = "\n\n".join(source_texts)
72
+ history[-1] = (history[-1][0], result["answer"])
73
+ return history, source_texts_str
74
+ except Exception as e:
75
+ app.chat_history.append((query, "I have no information about it. Feed me knowledge, please!"))
76
+ return history, f"I have no information about it. Feed me knowledge, please! Error: {str(e)}"
77
+
78
+ # Function to get response for the current RAG tab
79
+ def get_response_current(history, query):
80
+ if app.chain is None:
81
+ raise gr.Error("The chain has not been built yet. Please ensure the vector database is built before querying.")
82
+
83
+ try:
84
+ result = app.chain.invoke(
85
+ {"question": query, "chat_history": app.chat_history}
86
+ )
87
+ app.chat_history.append((query, result["answer"]))
88
+ source_docs = result["source_documents"]
89
+ source_texts = []
90
+ for doc in source_docs:
91
+ source_texts.append(f"Page {doc.metadata['page'] + 1}: {doc.page_content}")
92
+ source_texts_str = "\n\n".join(source_texts)
93
+ history[-1] = (history[-1][0], result["answer"])
94
+ return history, source_texts_str
95
+ except Exception as e:
96
+ app.chat_history.append((query, "I have no information about it. Feed me knowledge, please!"))
97
+ return history, f"I have no information about it. Feed me knowledge, please! Error: {str(e)}"
98
+
99
+ # Function to render file
100
+ def render_file(file) -> Image.Image:
101
+ doc = fitz.open(file.name)
102
+ page = doc[0]
103
+ pix = page.get_pixmap(dpi=150)
104
+ image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
105
+ return image
106
+
107
+ # Function to purge chat and render first page of PDF
108
+ def purge_chat_and_render_first(file) -> Image.Image:
109
+ app.chat_history = []
110
+ doc = fitz.open(file.name)
111
+ page = doc[0]
112
+ pix = page.get_pixmap(dpi=150)
113
+ image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
114
+ return image
115
+
116
+ # Function to refresh chat
117
+ def refresh_chat():
118
+ app.chat_history = []
119
+ return []
120
+
121
+ app = MyApp()
122
+
123
+ # Function to set API key
124
+ def set_api_key(api_key):
125
+ app.set_api_key(api_key)
126
+ # Pre-process the saved PDF file after setting the API key
127
+ saved_file_path = "THEDIA1.pdf"
128
+ with open(saved_file_path, 'rb') as saved_file:
129
+ app.process_file(saved_file)
130
+ app.build_chain(saved_file)
131
+ return f"API Key set to {api_key[:4]}...{api_key[-4:]} and vector database built successfully!"
132
+
133
+ # List of determined questions
134
+ questions = [
135
+ "What is the primary goal of Dialectical Behaviour Therapy?",
136
+ "How can mindfulness help in managing emotions?",
137
+ "What are some techniques to handle distressing situations?",
138
+ "Can you explain the concept of radical acceptance?",
139
+ "How does DBT differ from other types of therapy?"
140
+ ]
141
+
142
+ # Gradio interface
143
+ with gr.Blocks() as demo:
144
+ gr.Markdown("🧘‍♀️ **Dialectical Behaviour Therapy**")
145
+ gr.Markdown(
146
+ "Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. "
147
+ "We are not medical practitioners, and the use of this chatbot is at your own responsibility."
148
+ )
149
+
150
+ api_key_input = gr.Textbox(label="OpenAI API Key", type="password", placeholder="Enter your OpenAI API Key")
151
+ api_key_btn = gr.Button("Set API Key")
152
+ api_key_status = gr.Textbox(value="API Key status", interactive=False)
153
+
154
+ api_key_btn.click(
155
+ fn=set_api_key,
156
+ inputs=[api_key_input],
157
+ outputs=[api_key_status]
158
+ )
159
+
160
+ with gr.Tab("Take a Dialectical Behaviour Therapy with Me"):
161
+ with gr.Column():
162
+ chatbot_current = gr.Chatbot(elem_id="chatbot_current")
163
+ txt_current = gr.Textbox(
164
+ show_label=False,
165
+ placeholder="Enter text and press submit",
166
+ scale=2
167
+ )
168
+ submit_btn_current = gr.Button("Submit", scale=1)
169
+ refresh_btn_current = gr.Button("Refresh Chat", scale=1)
170
+ source_texts_output_current = gr.Textbox(label="Source Texts", interactive=False)
171
+
172
+ submit_btn_current.click(
173
+ fn=add_text,
174
+ inputs=[chatbot_current, txt_current],
175
+ outputs=[chatbot_current],
176
+ queue=False,
177
+ ).success(
178
+ fn=get_response_current, inputs=[chatbot_current, txt_current], outputs=[chatbot_current, source_texts_output_current]
179
+ )
180
+
181
+ refresh_btn_current.click(
182
+ fn=refresh_chat,
183
+ inputs=[],
184
+ outputs=[chatbot_current],
185
+ )
186
+
187
+ with gr.Tab("Questions"):
188
+ gr.Markdown("### Example Questions")
189
+ for question in questions:
190
+ gr.Markdown(f"- {question}")
191
+
192
+ demo.queue()
193
+ demo.launch()