Rahatara commited on
Commit
ab84a9d
1 Parent(s): 56a2342

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -93
app.py DELETED
@@ -1,93 +0,0 @@
1
- import os
2
- import gradio as gr
3
- import fitz # PyMuPDF
4
- from sentence_transformers import SentenceTransformer
5
- import numpy as np
6
- import faiss
7
- from typing import List, Tuple, Dict
8
-
9
- # Placeholder for the app's state
10
- class MyApp:
11
- def __init__(self) -> None:
12
- self.documents = []
13
- self.embeddings = None
14
- self.index = None
15
- self.model = SentenceTransformer('all-MiniLM-L6-v2')
16
-
17
- def load_pdfs(self, files: List[gr.File]) -> str:
18
- """Extracts text from multiple PDF files and stores them."""
19
- self.documents = []
20
- for file in files:
21
- doc = fitz.open(stream=file.read(), filetype="pdf")
22
- for page_num in range(len(doc)):
23
- page = doc[page_num]
24
- text = page.get_text()
25
- self.documents.append({
26
- "file_name": file.name,
27
- "page": page_num + 1,
28
- "content": text
29
- })
30
- return f"Processed {len(files)} PDFs successfully!"
31
-
32
- def build_vector_db(self) -> str:
33
- """Builds a vector database using the content of the PDFs."""
34
- if not self.documents:
35
- return "No documents to process."
36
- contents = [doc["content"] for doc in self.documents]
37
- self.embeddings = self.model.encode(contents, show_progress_bar=True)
38
- self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
39
- self.index.add(np.array(self.embeddings))
40
- return "Vector database built successfully!"
41
-
42
- def search_documents(self, query: str, k: int = 3) -> List[Dict]:
43
- """Searches for relevant document snippets using vector similarity."""
44
- if not self.index:
45
- return [{"content": "Vector database is not built."}]
46
- query_embedding = self.model.encode([query], show_progress_bar=False)
47
- D, I = self.index.search(np.array(query_embedding), k)
48
- results = [self.documents[i] for i in I[0]]
49
- return results if results else [{"content": "No relevant documents found."}]
50
-
51
- app = MyApp()
52
-
53
- def upload_files(files: List[gr.File]) -> str:
54
- return app.load_pdfs(files)
55
-
56
- def build_vector_db() -> str:
57
- return app.build_vector_db()
58
-
59
- def respond(message: str, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], str]:
60
- # Retrieve relevant documents
61
- retrieved_docs = app.search_documents(message)
62
- context = "\n".join(
63
- [f"File: {doc['file_name']}, Page: {doc['page']}\n{doc['content']}" for doc in retrieved_docs]
64
- )
65
-
66
- # Generate response (Placeholder for actual model inference)
67
- response_content = f"Simulated response based on the following context:\n{context}"
68
-
69
- # Append the message and generated response to the chat history
70
- history.append((message, response_content))
71
- return history, ""
72
-
73
- with gr.Blocks() as demo:
74
- gr.Markdown("# PDF Chatbot")
75
- gr.Markdown("Upload your PDFs, build a vector database, and start querying your documents.")
76
-
77
- with gr.Row():
78
- with gr.Column():
79
- upload_btn = gr.File(label="Upload PDFs", file_types=[".pdf"], file_count="multiple")
80
- upload_message = gr.Textbox(label="Upload Status", lines=2)
81
- build_db_btn = gr.Button("Build Vector Database")
82
- db_message = gr.Textbox(label="DB Build Status", lines=2)
83
-
84
- upload_btn.change(upload_files, inputs=[upload_btn], outputs=[upload_message])
85
- build_db_btn.click(build_vector_db, inputs=[], outputs=[db_message])
86
-
87
- with gr.Column():
88
- chatbot = gr.Chatbot(label="Chat Responses")
89
- query_input = gr.Textbox(label="Enter your query here")
90
- submit_btn = gr.Button("Submit")
91
- submit_btn.click(respond, inputs=[query_input, chatbot], outputs=[chatbot, query_input])
92
-
93
- demo.launch()