import gradio as gr from tensorflow.keras.preprocessing.image import img_to_array, ImageDataGenerator from PIL import Image import numpy as np import os import zipfile import tempfile # Image Augmentation Function def augment_images(image_files, num_duplicates): datagen = ImageDataGenerator( rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, zoom_range=0.2, shear_range=0.2, horizontal_flip=True, fill_mode='nearest') # Create a temporary directory to store augmented images with tempfile.TemporaryDirectory() as temp_dir: for image_file in image_files: img = Image.open(image_file).convert('RGB') # Convert to RGB for consistency img = img.resize((256, 256)) # Resize image x = img_to_array(img) # Convert the image to a numpy array x = x.reshape((1,) + x.shape) # Reshape for the data generator i = 0 for _ in datagen.flow(x, batch_size=1, save_to_dir=temp_dir, save_prefix='aug', save_format='jpeg'): i += 1 if i >= num_duplicates: break # Zip the augmented images zip_name = tempfile.mktemp(suffix='.zip') with zipfile.ZipFile(zip_name, 'w', zipfile.ZIP_DEFLATED) as zipf: for root, dirs, files in os.walk(temp_dir): for file in files: zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.join(temp_dir, '..'))) return zip_name # Gradio Interface def gradio_interface(image_files, num_duplicates): zip_file_path = augment_images(image_files, num_duplicates) return zip_file_path iface = gr.Interface(fn=gradio_interface, inputs=[gr.inputs.Image(type="file", label="Upload Images", accept="image/*", multiple=True), gr.inputs.Number(default=5, label="Number of Duplicates", min_value=1, max_value=20)], outputs=gr.outputs.File(label="Download Augmented Images"), title="Image Augmentation App", description="Upload images to generate augmented versions.") iface.launch()