import os import gradio as gr import fitz # PyMuPDF from sentence_transformers import SentenceTransformer import numpy as np import faiss from typing import List, Tuple, Dict # Placeholder for the app's state class MyApp: def __init__(self) -> None: self.documents = [] self.embeddings = None self.index = None self.model = SentenceTransformer('all-MiniLM-L6-v2') def load_pdfs(self, files: List[gr.File]) -> str: """Extracts text from multiple PDF files and stores them.""" self.documents = [] for file in files: doc = fitz.open(stream=file.read(), filetype="pdf") for page_num in range(len(doc)): page = doc[page_num] text = page.get_text() self.documents.append({ "file_name": file.name, "page": page_num + 1, "content": text }) return f"Processed {len(files)} PDFs successfully!" def build_vector_db(self) -> str: """Builds a vector database using the content of the PDFs.""" if not self.documents: return "No documents to process." contents = [doc["content"] for doc in self.documents] self.embeddings = self.model.encode(contents, show_progress_bar=True) self.index = faiss.IndexFlatL2(self.embeddings.shape[1]) self.index.add(np.array(self.embeddings)) return "Vector database built successfully!" def search_documents(self, query: str, k: int = 3) -> List[Dict]: """Searches for relevant document snippets using vector similarity.""" if not self.index: return [{"content": "Vector database is not built."}] query_embedding = self.model.encode([query], show_progress_bar=False) D, I = self.index.search(np.array(query_embedding), k) results = [self.documents[i] for i in I[0]] return results if results else [{"content": "No relevant documents found."}] app = MyApp() def upload_files(files: List[gr.File]) -> str: return app.load_pdfs(files) def build_vector_db() -> str: return app.build_vector_db() def respond(message: str, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], str]: # Retrieve relevant documents retrieved_docs = app.search_documents(message) context = "\n".join( [f"File: {doc['file_name']}, Page: {doc['page']}\n{doc['content']}" for doc in retrieved_docs] ) # Generate response (Placeholder for actual model inference) response_content = f"Simulated response based on the following context:\n{context}" # Append the message and generated response to the chat history history.append((message, response_content)) return history, "" with gr.Blocks() as demo: gr.Markdown("# PDF Chatbot") gr.Markdown("Upload your PDFs, build a vector database, and start querying your documents.") with gr.Row(): with gr.Column(): upload_btn = gr.File(label="Upload PDFs", file_types=[".pdf"], file_count="multiple") upload_message = gr.Textbox(label="Upload Status", lines=2) build_db_btn = gr.Button("Build Vector Database") db_message = gr.Textbox(label="DB Build Status", lines=2) upload_btn.change(upload_files, inputs=[upload_btn], outputs=[upload_message]) build_db_btn.click(build_vector_db, inputs=[], outputs=[db_message]) with gr.Column(): chatbot = gr.Chatbot(label="Chat Responses") query_input = gr.Textbox(label="Enter your query here") submit_btn = gr.Button("Submit") submit_btn.click(respond, inputs=[query_input, chatbot], outputs=[chatbot, query_input]) demo.launch()