import os import gradio as gr from google.generativeai import GenerativeModel, configure, types import fitz # PyMuPDF from sentence_transformers import SentenceTransformer import numpy as np import faiss from typing import List, Tuple # Make sure to import List and Tuple # Set up the Google API for the Gemini model GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY") configure(api_key=GOOGLE_API_KEY) # Placeholder for the app's state class MyApp: def __init__(self) -> None: self.documents = [] self.embeddings = None self.index = None self.load_pdf("THEDIA1.pdf") self.build_vector_db() def load_pdf(self, file_path: str) -> None: """Extracts text from a PDF file and stores it in the app's documents.""" doc = fitz.open(file_path) self.documents = [] for page_num in range(len(doc)): page = doc[page_num] text = page.get_text() self.documents.append({"page": page_num + 1, "content": text}) print("PDF processed successfully!") def build_vector_db(self) -> None: """Builds a vector database using the content of the PDF.""" model = SentenceTransformer('all-MiniLM-L6-v2') self.embeddings = model.encode([doc["content"] for doc in self.documents], show_progress_bar=True) self.index = faiss.IndexFlatL2(self.embeddings.shape[1]) self.index.add(np.array(self.embeddings)) print("Vector database built successfully!") def search_documents(self, query: str, k: int = 3) -> List[str]: """Searches for relevant documents using vector similarity.""" model = SentenceTransformer('all-MiniLM-L6-v2') query_embedding = model.encode([query], show_progress_bar=False) D, I = self.index.search(np.array(query_embedding), k) results = [self.documents[i]["content"] for i in I[0]] return results if results else ["No relevant documents found."] app = MyApp() def respond(message: str, history: List[Tuple[str, str]]): system_message = ( "You are a supportive and empathetic Dialectical Behaviour Therapist assistant. " "You politely guide users through DBT exercises based on the given DBT book. " "You must say one thing at a time and ask follow-up questions to continue the chat." ) messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # RAG - Retrieve relevant documents if the query suggests exercises or specific information if any( keyword in message.lower() for keyword in ["exercise", "technique", "information", "guide", "help", "how to"] ): retrieved_docs = app.search_documents(message) context = "\n".join(retrieved_docs) if context.strip(): messages.append({"role": "system", "content": "Relevant documents: " + context}) # Generate response using the generative model model = GenerativeModel("gemini-1.5-pro-latest") generation_config = types.GenerationConfig( temperature=0.7, max_output_tokens=1024, ) try: response = model.generate_content([message], generation_config=generation_config) # Properly access the response content response_content = response.text if hasattr(response, "text") else "No response generated." except Exception as e: response_content = f"An error occurred while generating the response: {str(e)}" # Append the message and generated response to the chat history history.append((message, response_content)) return history, "" def old_respond(message: str, history: List[Tuple[str, str]]): system_message = "You are a supportive and empathetic Dialectical Behaviour Therapist assistant. You politely guide users through DBT exercises based on the given DBT book. You must say one thing at a time and ask follow-up questions to continue the chat." messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # RAG - Retrieve relevant documents if the query suggests exercises or specific information if any(keyword in message.lower() for keyword in ["exercise", "technique", "information", "guide", "help", "how to"]): retrieved_docs = app.search_documents(message) context = "\n".join(retrieved_docs) if context.strip(): messages.append({"role": "system", "content": "Relevant documents: " + context}) model = GenerativeModel("gemini-1.5-pro-latest") generation_config = types.GenerationConfig( temperature=0.7, max_output_tokens=1024 ) response = model.generate_content([message], generation_config=generation_config) response_content = response[0].text if response else "No response generated." history.append((message, response_content)) return history, "" with gr.Blocks() as demo: gr.Markdown("# 🧘♀️ **Dialectical Behaviour Therapy**") gr.Markdown( "‼️Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. " "We are not medical practitioners, and the use of this chatbot is at your own responsibility." ) chatbot = gr.Chatbot() with gr.Row(): txt_input = gr.Textbox( show_label=False, placeholder="", lines=1 ) submit_btn = gr.Button("Submit", scale=1) refresh_btn = gr.Button("Refresh Chat", scale=1, variant="secondary") example_questions = [ ["What are some techniques to handle distressing situations?"], ["How does DBT help with emotional regulation?"], ["Can you give me an example of an interpersonal effectiveness skill?"], ["I want to practice mindfulness. Can you help me?"], ["I want to practice distraction techniques. What can I do?"], ["How do I plan self-accommodation?"], ["What are some distress tolerance skills?"], ["Can you help me with emotional regulation techniques?"], ["How can I improve my interpersonal effectiveness?"], ["What are some ways to cope with stress using DBT?"], ["Can you guide me through a grounding exercise?"] ] gr.Examples(examples=example_questions, inputs=[txt_input]) submit_btn.click(fn=respond, inputs=[txt_input, chatbot], outputs=[chatbot, txt_input]) refresh_btn.click(lambda: [], None, chatbot) if __name__ == "__main__": demo.launch()