import os import gradio as gr import fitz # PyMuPDF from sentence_transformers import SentenceTransformer import numpy as np import faiss from typing import List from google.generativeai import GenerativeModel, configure, types # Set up the Google API for the Gemini model GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") configure(api_key=GOOGLE_API_KEY) class MyApp: def __init__(self): self.documents = [] self.embeddings = None self.index = None self.model = SentenceTransformer('all-MiniLM-L6-v2') def load_pdfs(self, files): """Load and extract text from the provided PDF files.""" self.documents = [] for file in files: file_path = file.name # Get the file path doc = fitz.open(file_path) # Open the PDF using the file path for page_num in range(len(doc)): page = doc[page_num] text = page.get_text() self.documents.append({"page": page_num + 1, "content": text}) print("PDFs processed successfully.") def build_vector_db(self): """Build a vector database using the content of the PDFs.""" if not self.documents: return "No documents to process." self.embeddings = self.model.encode( [doc["content"] for doc in self.documents], show_progress_bar=True ) self.index = faiss.IndexFlatL2(self.embeddings.shape[1]) self.index.add(np.array(self.embeddings)) return "Vector database built successfully!" def search_documents(self, query: str, k: int = 3) -> List[str]: """Search for relevant documents using vector similarity.""" if not self.index: return ["Vector database is not ready."] query_embedding = self.model.encode([query], show_progress_bar=False) _, I = self.index.search(np.array(query_embedding), k) results = [self.documents[i]["content"] for i in I[0]] return results app = MyApp() def upload_files(files): app.load_pdfs(files) return "Files uploaded and processed. Ready to build vector database." def build_vector_db(): return app.build_vector_db() def answer_query(query): results = app.search_documents(query) if not results: return "No results found." # Generate a response using the generative model model = GenerativeModel("gemini-1.5-pro-latest") generation_config = types.GenerationConfig( temperature=0.7, max_output_tokens=150 ) try: response = model.generate_content(results, generation_config=generation_config) response_text = response.text if hasattr(response, "text") else "No response generated." except Exception as e: response_text = f"An error occurred while generating the response: {str(e)}" return response_text with gr.Blocks() as demo: gr.Markdown("# 🧘‍♀️ **Dialectical Behaviour Therapy Chatbot**") gr.Markdown("Upload your PDFs and interact with the content using AI.") with gr.Row(): upload_btn = gr.Files(label="Upload PDFs", file_types=["pdf"]) upload_status = gr.Textbox() with gr.Row(): db_btn = gr.Button("Build Vector Database") db_status = gr.Textbox() with gr.Row(): query_input = gr.Textbox(label="Enter your query") submit_btn = gr.Button("Submit") response_display = gr.Chatbot() upload_btn.change(upload_files, inputs=[upload_btn], outputs=[upload_status]) db_btn.click(build_vector_db, outputs=[db_status]) submit_btn.click(answer_query, inputs=[query_input], outputs=[response_display]) demo.launch()