import gradio as gr from huggingface_hub import InferenceClient from typing import List, Tuple import fitz # PyMuPDF client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Placeholder for the app's state class MyApp: def __init__(self) -> None: self.documents = [] self.load_pdf("THEDIA1.pdf") def load_pdf(self, file_path: str) -> None: """Extracts text from a PDF file and stores it in the app's documents.""" doc = fitz.open(file_path) self.documents = [] for page_num in range(len(doc)): page = doc[page_num] text = page.get_text() self.documents.append({"page": page_num + 1, "content": text}) print("PDF processed successfully!") def search_documents(self, query: str, k: int = 3) -> List[str]: """Searches for relevant documents containing the query string.""" results = [doc["content"] for doc in self.documents if query.lower() in doc["content"].lower()] return results[:k] if results else ["No relevant documents found."] app = MyApp() def respond( message: str, history: List[Tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, ): system_message = "You are a knowledgeable DBT coach. Use relevant documents to guide users through DBT exercises and provide helpful information." messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # RAG - Retrieve relevant documents retrieved_docs = app.search_documents(message) context = "\n".join(retrieved_docs) messages.append({"role": "system", "content": "Relevant documents: " + context}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response demo = gr.Blocks() with demo: gr.Markdown("🧘‍♀️ **Dialectical Behaviour Therapy**") gr.Markdown( "Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. " "We are not medical practitioners, and the use of this chatbot is at your own responsibility." ) chatbot = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a knowledgeable DBT coach. Use relevant documents to guide users through DBT exercises and provide helpful information.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], examples=[ ["I feel overwhelmed with work."], ["Can you guide me through a quick meditation?"], ["How do I stop worrying about things I can't control?"], ["What are some DBT skills for managing anxiety?"], ["Can you explain mindfulness in DBT?"], ["What is radical acceptance?"] ], title='DBT Coach 🧘‍♀️' ) if __name__ == "__main__": demo.launch()