Spaces:
Running
Running
File size: 3,150 Bytes
29ffd49 cee8e13 29ffd49 cee8e13 29ffd49 cee8e13 29ffd49 cee8e13 29ffd49 cee8e13 29ffd49 a49089b 29ffd49 cee8e13 29ffd49 cee8e13 29ffd49 cee8e13 29ffd49 cee8e13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import os
import time
from typing import List, Tuple, Optional
import google.generativeai as genai
import gradio as gr
from PIL import Image
print("google-generativeai:", genai.__version__)
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
# UI Titles and Subtitles
TITLE = "<h1 align='center'>π Gender Bias Detection App π</h1>"
SUBTITLE = "<h2 align='center'>Detect and analyze gender-based discrimination in communication.</h2>"
IMAGE_WIDTH = 512
def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
return [seq.strip() for seq in stop_sequences.split(",")] if stop_sequences else None
def preprocess_image(image: Image.Image) -> Image.Image:
image_height = int(image.height * IMAGE_WIDTH / image.width)
return image.resize((IMAGE_WIDTH, image_height))
def user(text_prompt: str, chatbot: List[Tuple[str, str]]):
return "", chatbot + [[text_prompt, None]]
def bot(
image_prompt: Optional[Image.Image],
temperature: float,
max_output_tokens: int,
stop_sequences: str,
top_k: int,
top_p: float,
chatbot: List[Tuple[str, str]]
):
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY is not set. Please set it up.")
text_prompt = chatbot[-1][0]
genai.configure(api_key=GOOGLE_API_KEY) # Use the global API key
generation_config = genai.types.GenerationConfig(
temperature=temperature,
max_output_tokens=max_output_tokens,
stop_sequences=preprocess_stop_sequences(stop_sequences),
top_k=top_k,
top_p=top_p,
instructions="Analyze this text for gender-based discrimination, including implicit biases and stereotypes. Provide specific examples and explain why each example demonstrates bias. Also, suggest tips for how to address or mitigate these biases within the text."
)
model_name = "gemini-1.5-pro-latest"
model = genai.GenerativeModel(model_name)
# Correctly handle inputs based on image_prompt
inputs = [text_prompt] if image_prompt is None else [text_prompt, preprocess_image(image_prompt)]
response = model.generate_content(inputs, stream=True, generation_config=generation_config)
response.resolve()
chatbot[-1][1] = ""
for chunk in response:
for i in range(0, len(chunk.text), 10):
chatbot[-1][1] += chunk.text[i:i + 10]
time.sleep(0.01)
yield chatbot
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown(TITLE)
gr.Markdown(SUBTITLE)
with gr.Row():
text_input = gr.Textbox(placeholder="Enter text to analyze for gender-based discrimination")
image_input = gr.Image(type="pil", label="Upload Image")
submit_button = gr.Button("Analyze")
chatbot_output = gr.Chatbot(label="Analysis Output")
submit_button.click(
fn=user, # Call user function first
inputs=[text_input, chatbot_output],
outputs=[chatbot_output],
queue=False # Prevent user input from being queued
).then(
fn=bot,
inputs=[image_input, 0.4, 1024, "END", 32, 1, chatbot_output],
outputs=[chatbot_output]
)
demo.launch() |