Rahatara's picture
Update app.py
2ea7ef9 verified
raw
history blame
2.05 kB
import cv2
import gradio as gr
import google.generativeai as genai
import os
import PIL.Image
# Configure the API key for Google Generative AI
genai.configure(api_key=os.environ.get("GOOGLE_API_KEY"))
# Define the Generative AI model
model = genai.GenerativeModel('gemini-1.5-flash')
# Function to capture frames from a video
def frame_capture(video_path, num_frames=5):
vidObj = cv2.VideoCapture(video_path)
frames = []
total_frames = int(vidObj.get(cv2.CAP_PROP_FRAME_COUNT))
frame_step = max(1, total_frames // num_frames)
count = 0
while len(frames) < num_frames:
vidObj.set(cv2.CAP_PROP_POS_FRAMES, count)
success, image = vidObj.read()
if not success:
break
frames.append(image)
count += frame_step
vidObj.release()
return frames
# Function to generate text descriptions for frames
def generate_descriptions_for_frames(video_path, user_prompt):
frames = frame_capture(video_path)
images = [PIL.Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) for frame in frames]
prompt = f"Describe what is happening in each of these frames in this video sequentially. {user_prompt}"
images_with_prompt = [prompt] + images
responses = model.generate_content(images_with_prompt)
descriptions = [response.text for response in responses]
formatted_description = format_descriptions(descriptions)
return formatted_description
# Helper function to format descriptions
def format_descriptions(descriptions):
return ' '.join(descriptions).strip()
# Define Gradio interface
video_input = gr.Video(label="Upload Video", autoplay=True)
user_input = gr.Textbox(label="Ask something specific about the video", placeholder="E.g., Are there any cars in this video?")
output_text = gr.Textbox(label="What's in this video")
# Create Gradio app
gr.Interface(
fn=generate_descriptions_for_frames,
inputs=[video_input, user_input],
outputs=output_text,
title="Interactive Video Analysis System"
).launch()