Spaces:
Running
Running
import cv2 | |
import gradio as gr | |
import google.generativeai as genai | |
import os | |
import PIL.Image | |
# Configure the API key for Google Generative AI | |
genai.configure(api_key=os.environ.get("GOOGLE_API_KEY")) | |
# Define the Generative AI model | |
model = genai.GenerativeModel('gemini-1.5-flash') | |
# Function to capture frames from a video | |
def frame_capture(video_path, num_frames=5): | |
vidObj = cv2.VideoCapture(video_path) | |
frames = [] | |
total_frames = int(vidObj.get(cv2.CAP_PROP_FRAME_COUNT)) | |
frame_step = max(1, total_frames // num_frames) | |
count = 0 | |
while len(frames) < num_frames: | |
vidObj.set(cv2.CAP_PROP_POS_FRAMES, count) | |
success, image = vidObj.read() | |
if not success: | |
break | |
frames.append(image) | |
count += frame_step | |
vidObj.release() | |
return frames | |
# Function to generate text descriptions for frames | |
def generate_descriptions_for_frames(video_path): | |
frames = frame_capture(video_path) | |
images = [PIL.Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) for frame in frames] | |
prompt = "Describe what is happening in each of these frames." | |
images_with_prompt = [prompt] + images | |
responses = model.generate_content(images_with_prompt) | |
descriptions = [response.text for response in responses] | |
formatted_description = format_descriptions(descriptions) | |
return formatted_description | |
# Helper function to format descriptions | |
def format_descriptions(descriptions): | |
return ' '.join(descriptions).strip() | |
# Define Gradio interface | |
video_input = gr.Video(label="Upload or Record Video", source="upload", type="filepath") | |
output_text = gr.Textbox(label="Video Analysis") | |
# Create Gradio app | |
gr.Interface(fn=generate_descriptions_for_frames, inputs=video_input, outputs=output_text, title="Video Content Detection System").launch() | |