Rahatara's picture
Update app.py
7088a43 verified
raw
history blame
4.84 kB
import os
import time
from typing import List, Tuple, Optional
import google.generativeai as genai
import gradio as gr
from PIL import Image
print("google-generativeai:", genai.__version__)
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
TITLE = """<h1 align="center">🕹️ Google Gemini Chatbot 🔥</h1>"""
SUBTITLE = """<h2 align="center">🎨Create with Multimodal Gemini</h2>"""
DUPLICATE = """
<div style="text-align: center; display: flex; justify-content: center; align-items: center;">
<a href="https://huggingface.co/spaces/Rahatara/build_with_gemini/blob/main/allgemapp.py?duplicate=true">
<img src="https://bit.ly/3gLdBN6" alt="Duplicate Space" style="margin-right: 10px;">
</a>
<span>Duplicate the Space and run securely with your
<a href="https://makersuite.google.com/app/apikey">GOOGLE API KEY</a>.
</span>
</div>
"""
IMAGE_WIDTH = 512
def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
return [seq.strip() for seq in stop_sequences.split(",")] if stop_sequences else None
def preprocess_image(image: Image.Image) -> Image.Image:
image_height = int(image.height * IMAGE_WIDTH / image.width)
return image.resize((IMAGE_WIDTH, image_height))
def user(text_prompt: str, chatbot: List[Tuple[str, str]]):
return "", chatbot + [[text_prompt, None]]
def bot(
google_key: str,
image_prompt: Optional[Image.Image],
temperature: float,
max_output_tokens: int,
stop_sequences: str,
top_k: int,
top_p: float,
chatbot: List[Tuple[str, str]]
):
google_key = google_key or GOOGLE_API_KEY
if not google_key:
raise ValueError("GOOGLE_API_KEY is not set. Please set it up.")
text_prompt = chatbot[-1][0]
genai.configure(api_key=google_key)
generation_config = genai.types.GenerationConfig(
temperature=temperature,
max_output_tokens=max_output_tokens,
stop_sequences=preprocess_stop_sequences(stop_sequences),
top_k=top_k,
top_p=top_p,
#instructions = "You are an expert stylist"
)
model_name = "gemini-1.5-pro-latest" if image_prompt is None else "gemini-pro-vision"
model = genai.GenerativeModel(model_name)
inputs = [text_prompt] if image_prompt is None else [text_prompt, preprocess_image(image_prompt)]
response = model.generate_content(inputs, stream=True, generation_config=generation_config)
response.resolve()
chatbot[-1][1] = ""
for chunk in response:
for i in range(0, len(chunk.text), 10):
chatbot[-1][1] += chunk.text[i:i + 10]
time.sleep(0.01)
yield chatbot
google_key_component = gr.Textbox(
label="GOOGLE API KEY",
type="password",
placeholder="...",
visible=GOOGLE_API_KEY is None
)
image_prompt_component = gr.Image(type="pil", label="Image")
chatbot_component = gr.Chatbot(label='Gemini', bubble_full_width=False)
text_prompt_component = gr.Textbox(placeholder="Hi there!", label="Ask me anything and press Enter")
run_button_component = gr.Button("Run")
temperature_component = gr.Slider(minimum=0, maximum=1.0, value=0.4, step=0.05, label="Temperature")
max_output_tokens_component = gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Token limit")
stop_sequences_component = gr.Textbox(label="Add stop sequence", placeholder="STOP, END")
top_k_component = gr.Slider(minimum=1, maximum=40, value=32, step=1, label="Top-K")
top_p_component = gr.Slider(minimum=0, maximum=1, value=1, step=0.01, label="Top-P")
user_inputs = [text_prompt_component, chatbot_component]
bot_inputs = [google_key_component, image_prompt_component, temperature_component, max_output_tokens_component, stop_sequences_component, top_k_component, top_p_component, chatbot_component]
with gr.Blocks() as demo:
gr.HTML(TITLE)
gr.HTML(SUBTITLE)
gr.HTML(DUPLICATE)
with gr.Column():
google_key_component.render()
with gr.Row():
image_prompt_component.render()
chatbot_component.render()
text_prompt_component.render()
run_button_component.render()
with gr.Accordion("Parameters", open=False):
temperature_component.render()
max_output_tokens_component.render()
stop_sequences_component.render()
with gr.Accordion("Advanced", open=False):
top_k_component.render()
top_p_component.render()
run_button_component.click(fn=user, inputs=user_inputs, outputs=[text_prompt_component, chatbot_component], queue=False).then(fn=bot, inputs=bot_inputs, outputs=[chatbot_component])
text_prompt_component.submit(fn=user, inputs=user_inputs, outputs=[text_prompt_component, chatbot_component], queue=False).then(fn=bot, inputs=bot_inputs, outputs=[chatbot_component])
demo.launch()