Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import replicate
|
3 |
+
import os
|
4 |
+
from huggingface_hub import InferenceClient
|
5 |
+
import random
|
6 |
+
import openai
|
7 |
+
|
8 |
+
# Set API tokens
|
9 |
+
os.environ["REPLICATE_API_TOKEN"] = "r8_8TlgofGX8rjeBL28vn0VBR93CWOUfvg4NbLS0"
|
10 |
+
# Initialize the Replicate client
|
11 |
+
rep_client = replicate.Client()
|
12 |
+
|
13 |
+
# Set your OpenAI API key
|
14 |
+
OPENAI_API_KEY = "sk-proj-5iy4bwrqAW8GpguiEawaT3BlbkFJ8p88lLSjOCeDbxWsAOlr"
|
15 |
+
openai.api_key = OPENAI_API_KEY
|
16 |
+
# Initialize the Replicate client
|
17 |
+
rep_client = replicate.Client()
|
18 |
+
|
19 |
+
# Predefined prompts for the dropdown
|
20 |
+
predefined_prompts = [
|
21 |
+
"Missing bolts on railway track",
|
22 |
+
"Cracks on railway track",
|
23 |
+
"Overgrown vegetation near railway track",
|
24 |
+
"Broken railings on railway bridge",
|
25 |
+
"Debris on railway track",
|
26 |
+
"Damaged railway platform"
|
27 |
+
]
|
28 |
+
|
29 |
+
|
30 |
+
def ask_rail_defect_question(question, model_name='ft:gpt-3.5-turbo-0125:personal::99NsSAeQ'):
|
31 |
+
openai.api_key = OPENAI_API_KEY
|
32 |
+
response = openai.ChatCompletion.create(
|
33 |
+
model=model_name,
|
34 |
+
messages=[
|
35 |
+
{
|
36 |
+
"role": "system",
|
37 |
+
"content": "The assistant is knowledgeable about rail defects and can answer questions related to them.",
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"role": "user",
|
41 |
+
"content": question,
|
42 |
+
}
|
43 |
+
],
|
44 |
+
)
|
45 |
+
return response.choices[0].message['content']
|
46 |
+
|
47 |
+
# Function to generate variations enhanced by the GPT model
|
48 |
+
def generate_variations(base_prompt, number_of_variations):
|
49 |
+
locations = ["on the left side", "on the right side", "at the top", "at the bottom", "in the center"]
|
50 |
+
sizes = ["small", "medium", "large", "tiny", "huge"]
|
51 |
+
weather_conditions = ["under cold conditions", "during hot weather", "in dry weather", "in humid conditions", "under varying temperatures"]
|
52 |
+
|
53 |
+
variations = []
|
54 |
+
for _ in range(number_of_variations):
|
55 |
+
location = random.choice(locations)
|
56 |
+
size = random.choice(sizes)
|
57 |
+
weather = random.choice(weather_conditions)
|
58 |
+
|
59 |
+
# Enhance the base prompt with the GPT model
|
60 |
+
enhanced_prompt = ask_rail_defect_question(base_prompt)
|
61 |
+
|
62 |
+
full_prompt = f"{enhanced_prompt}, with a {size} defect {location}, observed {weather}."
|
63 |
+
variations.append(full_prompt)
|
64 |
+
return variations
|
65 |
+
|
66 |
+
# Function to generate images from prompts
|
67 |
+
def generate_images(prompts):
|
68 |
+
images = []
|
69 |
+
for prompt in prompts:
|
70 |
+
try:
|
71 |
+
prediction = rep_client.predictions.create(
|
72 |
+
version="ac732df83cea7fff18b8472768c88ad041fa750ff7682a21affe81863cbe77e4",
|
73 |
+
input={"prompt": prompt, "scheduler": "K_EULER"}
|
74 |
+
)
|
75 |
+
prediction.wait()
|
76 |
+
if prediction.status == "succeeded" and prediction.output:
|
77 |
+
images.append(prediction.output[0])
|
78 |
+
else:
|
79 |
+
images.append("Failed to generate image.")
|
80 |
+
except Exception as e:
|
81 |
+
images.append(f"Error: {str(e)}")
|
82 |
+
return images
|
83 |
+
|
84 |
+
def process_railway_defects(prompt, number_of_images):
|
85 |
+
variations = generate_variations(prompt, number_of_images)
|
86 |
+
images = generate_images(variations)
|
87 |
+
return images
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
# UI creation
|
92 |
+
with gr.Blocks() as app:
|
93 |
+
with gr.Tabs("Prompt Input"):
|
94 |
+
with gr.Tab("Current Defects"):
|
95 |
+
with gr.Row():
|
96 |
+
prompt_input = gr.Dropdown(choices=predefined_prompts, label="Select a prompt")
|
97 |
+
number_input_dropdown = gr.Number(label="Number of images to generate", value=1, minimum=1, maximum=10)
|
98 |
+
submit_button_dropdown = gr.Button("Generate")
|
99 |
+
image_outputs_dropdown = gr.Gallery()
|
100 |
+
|
101 |
+
def on_submit_click_dropdown(prompt, number_of_images):
|
102 |
+
images = process_railway_defects(prompt, number_of_images)
|
103 |
+
return images
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
submit_button_dropdown.click(
|
108 |
+
fn=on_submit_click_dropdown,
|
109 |
+
inputs=[prompt_input, number_input_dropdown],
|
110 |
+
outputs=image_outputs_dropdown
|
111 |
+
)
|
112 |
+
|
113 |
+
with gr.Tab("Custom Defect"):
|
114 |
+
with gr.Row():
|
115 |
+
custom_prompt_input = gr.Textbox(label="Custom Defect")
|
116 |
+
number_input_custom = gr.Number(label="Number of images to generate", value=1, minimum=1, maximum=10)
|
117 |
+
submit_button_custom = gr.Button("Generate")
|
118 |
+
image_outputs_custom = gr.Gallery()
|
119 |
+
|
120 |
+
def on_submit_click_custom(custom_prompt, number_of_images):
|
121 |
+
images = process_railway_defects(custom_prompt, number_of_images)
|
122 |
+
return images
|
123 |
+
|
124 |
+
submit_button_custom.click(
|
125 |
+
fn=on_submit_click_custom,
|
126 |
+
inputs=[custom_prompt_input, number_input_custom],
|
127 |
+
outputs=image_outputs_custom
|
128 |
+
)
|
129 |
+
|
130 |
+
if __name__ == "__main__":
|
131 |
+
app.launch()
|