import gradio as gr import replicate import os from huggingface_hub import InferenceClient import random import openai # Set API tokens os.environ["REPLICATE_API_TOKEN"] = "r8_8TlgofGX8rjeBL28vn0VBR93CWOUfvg4NbLS0" # Initialize the Replicate client rep_client = replicate.Client() # Set your OpenAI API key OPENAI_API_KEY = "sk-proj-5iy4bwrqAW8GpguiEawaT3BlbkFJ8p88lLSjOCeDbxWsAOlr" openai.api_key = OPENAI_API_KEY # Initialize the Replicate client rep_client = replicate.Client() # Predefined prompts for the dropdown predefined_prompts = [ "Missing bolts on railway track", "Cracks on railway track", "Overgrown vegetation near railway track", "Broken railings on railway bridge", "Debris on railway track", "Damaged railway platform" ] def ask_rail_defect_question(question, model_name='ft:gpt-3.5-turbo-0125:personal::99NsSAeQ'): openai.api_key = OPENAI_API_KEY response = openai.ChatCompletion.create( model=model_name, messages=[ { "role": "system", "content": "The assistant is knowledgeable about rail defects and can answer questions related to them.", }, { "role": "user", "content": question, } ], ) return response.choices[0].message['content'] # Function to generate variations enhanced by the GPT model def generate_variations(base_prompt, number_of_variations): locations = ["on the left side", "on the right side", "at the top", "at the bottom", "in the center"] sizes = ["small", "medium", "large", "tiny", "huge"] weather_conditions = ["under cold conditions", "during hot weather", "in dry weather", "in humid conditions", "under varying temperatures"] variations = [] for _ in range(number_of_variations): location = random.choice(locations) size = random.choice(sizes) weather = random.choice(weather_conditions) # Enhance the base prompt with the GPT model enhanced_prompt = ask_rail_defect_question(base_prompt) full_prompt = f"{enhanced_prompt}, with a {size} defect {location}, observed {weather}." variations.append(full_prompt) return variations # Function to generate images from prompts def generate_images(prompts): images = [] for prompt in prompts: try: prediction = rep_client.predictions.create( version="ac732df83cea7fff18b8472768c88ad041fa750ff7682a21affe81863cbe77e4", input={"prompt": prompt, "scheduler": "K_EULER"} ) prediction.wait() if prediction.status == "succeeded" and prediction.output: images.append(prediction.output[0]) else: images.append("Failed to generate image.") except Exception as e: images.append(f"Error: {str(e)}") return images def process_railway_defects(prompt, number_of_images): variations = generate_variations(prompt, number_of_images) images = generate_images(variations) return images # UI creation with gr.Blocks() as app: with gr.Tabs("Prompt Input"): with gr.Tab("Current Defects"): with gr.Row(): prompt_input = gr.Dropdown(choices=predefined_prompts, label="Select a prompt") number_input_dropdown = gr.Number(label="Number of images to generate", value=1, minimum=1, maximum=10) submit_button_dropdown = gr.Button("Generate") image_outputs_dropdown = gr.Gallery() def on_submit_click_dropdown(prompt, number_of_images): images = process_railway_defects(prompt, number_of_images) return images submit_button_dropdown.click( fn=on_submit_click_dropdown, inputs=[prompt_input, number_input_dropdown], outputs=image_outputs_dropdown ) with gr.Tab("Custom Defect"): with gr.Row(): custom_prompt_input = gr.Textbox(label="Custom Defect") number_input_custom = gr.Number(label="Number of images to generate", value=1, minimum=1, maximum=10) submit_button_custom = gr.Button("Generate") image_outputs_custom = gr.Gallery() def on_submit_click_custom(custom_prompt, number_of_images): images = process_railway_defects(custom_prompt, number_of_images) return images submit_button_custom.click( fn=on_submit_click_custom, inputs=[custom_prompt_input, number_input_custom], outputs=image_outputs_custom ) if __name__ == "__main__": app.launch()