
1

DefectTwin: When LLM Meets Digital Twin for

Railway Defect Inspection
Rahatara Ferdousi (School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa,

Ontario, Canada; Email: rferd068@uottawa.ca),

M. Anwar Hossain (School of Computing, Queen’s University, Kingston, Ontario, Canada),

Chunsheng Yang (Institute of Artificial Intelligence, Guangzhou University, Guangzhou, China),

Abdulmotaleb El Saddik (School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa,

Ontario, Canada).

Abstract—A Digital Twin (DT) replicates objects, processes, or
systems to enable real-time monitoring, simulation, and predictive
maintenance. Recent advancements, such as Large Language
Models (LLMs), have revolutionized traditional AI systems and
show immense potential when combined with DT in various
industrial applications. Railway defect inspection is one such
application, which traditionally requires a large volume of defect
samples to identify underlying patterns. However, training a new
defect classifier with limited samples often leads to overfitting
and poor performance on unseen defects. This challenge can
be addressed by integrating pre-trained LLMs into DT, as
specialized LLMs for defect inspection inherently reduce the need
for extensive sample data. We propose an integration between
LLM and DT for railway defect inspection and enable its usage
in consumer electronics (CE) devices. Accordingly, we introduce
DefectTwin, which utilizes a multimodal and multi-model (M²)
LLM-based AI pipeline to analyze seen and unseen visual defects
in railways. Using this application, a railway agent can mimic
the tasks of an expert defect analyst using CE devices (e.g.,
tablets). The multimodal processor in DefectTwin ensures that
the response generated from the AI pipeline is in a consumable
format. An instant user feedback handling mechanism (instaUF)
enables the Quality-of-Experience (QoE) feedback-loop within
DefectTwin. The proposed M² LLM outperforms existing base
models by achieving high precision (between 0.76-0.93) across
multimodal input (text, image, video) that characterizes pre-
trained defects. Additionally, we obtained better performance
in zero-shot generalizability for unseen defects. We also evalu-
ated the latency, token count, and usefulness of the responses
generated by the DefectTwin application on a CE device. To the
best of our knowledge, DefectTwin is the first LLM-integrated
DT for railway defect inspection.

Index Terms—Digital Twin, Large Models, Large Language
Models, Consumer Electronics, Visual Railway Defect Inspection,
Multimodal LLM, Multimodal AI

I. INTRODUCTION

DT – Artificial Intelligence (AI) integrated DTs deployed in

Consumer electronics (CE) are beneficial for various industrial

applications [1], [2]. For instance, applications like railway

defect inspection have recently gained attention [3] in this area.

However, existing AI-integrated systems often struggle with

the complexity of visual inspection tasks [4]. Such complexity

mainly arises from the limited defect samples, leading to

suboptimal performance [5], [6].

Recent advancements like Large Language Models (LLMs),

have revolutionized traditional AI systems by excluding the

need for rapid training on huge amounts of samples. The

characteristics of LLM to learn continuously from new data

enhance the performance in unseen classification tasks (also

known as zero-shot generalizability). This motivates us to im-

prove the accuracy, efficiency, and generalizability of railway

defect detection by combining DT and LLM. Therefore, in

this research, we develop a case where LLM-integrated DT

applications are designed for use in CE devices.

In this research, we introduce DefectTwin as an LLM-

integrated DT system for visual railway defect inspection 1.

DefectTwin uses a synthetic dataset generation pipeline to

create a custom visual instruct dataset, which fine-tunes a

base language model (e.g., GPT-3.5) [7] into a specialized

Defect LLM. The proposed system enhances user prompts

by integrating Virtual Prompt Injections (VPI) [8] and system

messages [9]. This enhanced prompt is processed by the fine-

tuned LLM to generate a detailed visual defect description.

Multimodal models use this description to create [10] or

understand [11] images, videos, or 3D models of defects.

An Integrated Multimodal Processor [12] ensures user-friendly

output consumed on CE device. In addition, the Instant User

Feedback (InstaUF) Pipeline iteratively improves the perfor-

mance through user feedback.

The key research question investigates whether LLM-

integrated DTs can enhance defect detection accuracy and

maintenance efficiency in railway systems. The apps proto-

typed for DefectTwin are tested on a CE device (iPad 10th

generation). The experiment involves synthetic dataset gen-

eration, fine-tuning, and validation using real-world datasets

from the Canadian Pacific Railway (CPR) and other sources.

We observed that DefectTwin achieves a precision of 0.93 in

identifying railway defects, outperforming existing models.

Our research includes an ablation study addressing the

impact of integrating text, image, and video data on defect

detection accuracy, the effectiveness of synthetic datasets,

the enhancement of model performance and user satisfac-

tion through the QoE feedback loop, and the comparative

performance of the proposed algorithms. Results confirm

DefectTwin as an effective solution for automated visual rail

defect inspection. Additionally, we proved the optimality of

the proposed algorithms theoretically.

1Please find the codes and data used in this research

mailto:rferd068@uottawa.ca
https://github.com/turna1/DefectTwin/blob/main/README.md
https://orcid.org/0000-0003-1143-2370
https://orcid.org/0000-0002-7673-8410
https://orcid.org/0000-0003-3043-5622
https://orcid.org/0000-0002-7690-8547

2

Key contributions of this paper include:

1) Introducing a Multimodal and Multimodel (M²) LLM-

based AI inferencing Pipeline in DT for a specialized

case- visual railway defect inspection.

2) Proposing a pipeline for generating synthetic datasets to

address data scarcity, improving zero-shot generalizabil-

ity in domain-specific LLM fine-tuning, which was not

addressed in our previous work [13].

3) Designing Algorithm for Instant User Feedback Han-

dling Loop for continuous model refinement.

4) Employing a multimodal processor to refine generative

media to increase usefulness (e.g., enhanced defect anal-

ysis).

Subsequent sections cover the literature review in Section

II, methodology in Section III, experimental setup and results

in Section IV, discussion, and conclusion, detailing the

development and validation of the DefectTwin system, its

implications, and future research directions in section V.

II. LITERATURE REVIEW

In this section, we synthesize the literature on integrating

LLMs into DT systems for visual railway defect analysis 2.

A. DT and AI

DT technology presents transformative opportunities by

allowing manufacturers to simulate real-world conditions dig-

itally, enhancing product design, development, and mainte-

nance [14]–[16]. DTs enable virtual simulation of objects and

processes to optimize risk and cost, offering personalized user

experiences through continuous data collection and analysis

from consumer devices [6].

Advancements in AI have led to the development of LLMs

like ChatGPT and GPT-4, capable of addressing complex

problems [17]. Integrating LLMs and Visual LLMs (VLMs)

[18] into CE can revolutionize device design and usage, opti-

mizing production processes and predicting equipment failures

[6]. Enhanced user interaction and voice-activated assistant

accuracy are key benefits [12], [19]. However, challenges such

as sustainability, data privacy, and on-device LLMs must be

addressed [7].

B. Multimodal LLMs for AI-Integrated DT

As the demand for intelligent automation continues to grow,

AI-integrated DT and LLMs are expected to play a pivotal

role in the future of inspection in manufacturing and other

applications [7] [5]. While the general impact of LLMs and

DT has been discussed in the context of consumer electronics

[5] [19] [20], evaluations of LLM-integrated DT in specialized

domains remain limited.

In this research, we focus on a specific use case: visual

railway defect inspection using a CE device. We use a tablet to

explore and evaluate the DefectTwin apps. So that the impact

of LLM-integrated DT in resource-constrained CE devices

can be understood. The following sections detail various

2Please check the paper collection here.

LLM methods we identified as applicable to our target use

case, highlighting their potential in railway defect inspection

through enhanced precision and efficiency.

1) Text-to-Image Models: While text-to-image models [21]

offer a potential solution for generating synthetic data, creating

effective prompts for specialized domains remains challenging

[22]. Instruction tuning, which fine-tunes models to respond

to specific prompts, can enhance the relevance and usefulness

of generated images for specialized tasks [5].

2) Hybrid Instruction-Following Agents: There are two

main approaches to building instruction-following agents [23]:

(i) Multimodel, which coordinates various models via frame-

works like LangChain or LLMs (e.g., Visual ChatGPT), and

(ii) Multimodal, which can support multimodal input-output.

A hybrid instruction-following agent that integrates both mul-

timodal and multimodel approaches is ideal for comprehensive

task handling [24].

3) High-Quality Instructions: High-quality instructions are

crucial for fine-tuning multitasking agents. Recent trends

involve using GPT-generated instructions (e.g., LLAVA [9],

Objaverse [25], and MIMIC-IT [26]) to improve performance

by helping models better understand the context and specific

domain requirements. To ensure the quality of generated

instruction-response pairs, the Syphus pipeline [26] incorpo-

rates system messages, visual annotations, and in-context ex-

amples as prompts for ChatGPT. This approach helps maintain

high standards in instruction generation.
4) Positioning Attacks: Positioning attacks, where agents

receive continuous prompts without relevant visual details,

can degrade performance. The Virtual Prompt Injection (VPI)

[8] pipeline addresses this issue using trigger instructions

and virtual prompts to ensure the agent captures the correct

context.

5) Incorporating Human Feedback for Quality Assurance:

Hybrid reinforcement learning models that incorporate human

feedback (HF) and AI feedback are essential for ensuring the

quality of responses, especially in specialized domains like

railway defect inspection [24].

C. Requirements and Challenges

Key requirements and challenges in deploying LLM-

integrated DT systems for visual defect inspection include:

• Data Scarcity: Rich synthetic data generation is essential

because it helps overcome the limitations of real-world

data availability, thereby improving model performance

and increasing the diversity of training examples. This

ensures that the models can generalize better to a wide

variety of defect scenarios [13], [27].

• Effective Prompts: Instruction tuning is crucial as it en-

hances the relevance and usefulness of generated images

for specialized tasks. By fine-tuning the prompts, LLMs

can produce more accurate and task-specific outputs,

which is particularly important in specialized domains

like defect inspection [5].

• Hybrid Instruction-Following Agents: Multimodal and

multi-model capabilities are vital because they com-

binedly improve the in-context response generation ca-

pacity of LLMs. This means that the LLMs can better

https://github.com/turna1/Awesome-Multmodal_LLM

3

understand and respond to complex inputs that include

multiple data types (e.g., text, images, videos), resulting

in more accurate and context-aware defect analysis and

predictions.

III. METHODOLOGY

This section first presents an overview of the DefectTwin

framework followed by its components and algorithms.

The proposed DefectTwin system is an LLM-integrated DT

approach designed to enhance railway defect detection, predic-

tive maintenance, and user interaction. The system comprises

several interconnected components, as illustrated in Fig. 1
3. As in Fig. 1, different sensing devices are employed to

collect defect parameters such as images and metadata from

the defective physical railway components. This data is trans-

mitted to data storage and data pre-processing units, which are

bidirectionally connected to the AI inferencing engine. This

connection ensures high defect identification accuracy through

data augmentation and synthetic data generation. Users interact

with the system via a multimodal interface, utilizing different

forms of DT (e.g. information-twin and predictive-twin) for

defect analysis and maintenance. The information twin makes

decisions by analyzing existing data, such as identifying the

LLM to generate a descriptive caption using a popular visual

captioning technique known as the template-based caption

generation approach. For our specific application, we devel-

oped a prompt template in collaboration with domain experts

to capture essential visual defect characteristics, particularly

those challenging to capture in real-life scenarios.

2) Rephrasing Algorithm for Diversity: The template-based

caption serves as input for rephrasing, as given in Algorithm 1.

This technique transforms the prompt into new, intricate illus-

trations that accurately depict the specified elements missing

in the original caption. By utilizing this procedure, we produce

a significant number of synthetic examples, providing rich

training examples for tuning the custom LLM. The Defect

LLM dataset (DLLMDS) Generation Pipeline aims to solve

the challenge of data scarcity in deploying LLM-based DT

solutions.

Lemma 1. We can define the problem as a constrained

optimization problem where we want to maximize the diversity

of the samples (D) and minimize the reconstruction loss (L).

Proof. The objective function aims to maximize the diversity

of the samples (D) and minimize the reconstruction loss (L).

This can be represented as:

type of defect found. In contrast, the predictive twin anticipates

future states in a simulative manner, like predicting additional

cracks on the track before they occur. The system includes
a Quality-of-Experience (QoE) feedback loop to continuously

where:

maximize
D,L

D − λL (1)

refine AI models based on user feedback.

The proposed M 2 LLM-based AI Inferencing Pipeline aims

to generate a high-fidelity in-domain synthetic dataset for fine-

tuning a base LLM to improve the performance of multimodal

decoders used for various purposes, such as text-to-image,

video-to-text, and image-to-text. The multimodal approach

supports various data types, while the multimodel approach

uses task-specific models (like video-to-text or text-to-image)

accessed through a fine-tuned LLM. The pipeline involves

several steps as illustrated in Fig. 2, including generating

synthetic data, fine-tuning the base LLM, and integrating

multimodal processing to dynamically map generated defect

textures to 3D models of rail components. The key components

in the proposed AI inferencing pipeline are described as

follows.

A. Synthetic Defect LLM Dataset Generation

In our proposed synthetic defect generation pipeline shown

in Fig. 3, we leverage an LLM with visual captioning capa-

bilities to create synthetic images with defects. The different

tasks in this step are as follows:

1) Template-based Caption Generation: We chose GPT-

4, which has been utilized for creating prominent visual-

instruction datasets such as LLAVA, MIMIC IT, Objaverse,

and Sceneverse [26]. Furthermore, from the literature, we

found that LLM fine-tuned using rephrased samples achieved

high accuracy. As demonstrated in Fig. 3, the process starts

by taking a raw image as input and passing it through the

3Please see the animated version for better understanding.

• D is the diversity of the samples,

• L is the reconstruction loss,

• λ is a trade-off parameter that balances the two objectives.

Each sample must be unique and more complex than the

previous ones. The total number of samples must be less than

or equal to K. These constraints can be represented as:

snew ̸= sold, ∀sold ∈ Samples and |Samples| ≤ K (2)

The Lagrangian for this problem is:

L(D, L, λ, µ) = D − λL + µ(K − |Samples|) (3)

Where µ is the Lagrange multiplier for the constraint.

The optimality conditions for this problem are obtained by

setting the partial derivatives of the Lagrangian with respect

to D, L, and µ to zero:

∂L
= 1 − µ = 0 (4)

∂D

∂L
= −λ = 0 (5)

∂L

∂L
= K − |Samples| = 0 (6)

∂µ

These conditions provide a mathematical proof for the al-

gorithm’s objective. The algorithm achieves this by generating

unique and complex samples until it reaches the maximum

number of samples (K), while ensuring that the reconstruction

loss is minimized.

https://github.com/turna1/DefectTwin/blob/main/defect_twin_framework.gif

4

Fig. 1. High-level framework of LLM-based DefectTwin

Fig. 2. The AI inferencing pipeline for railway defect detection.

The Algorithm 1, leverages template-based captions to gen-

erate a diverse and complex dataset. Each caption is expanded

into multiple detailed samples using a language model, and

each sample is paired with a system message to guide the

fine-tuned DefectTwin LLM. Let us consider the following

example:

Given a list of template-based captions: captions = “A crack

on the rail”, “Corrosion at the joint”, “A missing bolt”

The algorithm generates multiple unique and complex sam-

ples for each caption. For example, for the caption “A crack

on the rail”, the generated samples could be:

Samples = s1, s2, s3. where, s1 = “A crack 3 inches long

on the rail surface, perpendicular to the track direction.”; s2

= “A diagonal crack on the rail with a depth of 2mm, located

near the joint.”; s3 = “A longitudinal crack running along the

rail track, extending 5 inches.”

Each sample is paired with a system message: System

Message = “Given the defect description provided, identify

5

Fig. 3. Synthetic data generation pipeline.

Algorithm 1 Rephrasing Algorithm for Diversity

Input: A list of template-based captions from defect im-
ages: captions = [c1, c2, ..., cn]

Output: A dataset with multiple diverse and complex sam-

ples per caption, each accompanied by a system message.

on the initial description: ci, create a prompt/response pair

ensuring the response is more complex and diverse than

previous ones.”

Unique and complex samples snew are added to the set

Samples:

Step-1: Create an empty list: DS = []

Step-2: For each caption (ci) in captions, create an
if (s

new
is unique and complex) ⇒ add s

new to Samples (8)

empty set for unique samples: Samples = {}
Step-3:

while the number of samples is less than K do

Generate a new sample (snew) using a language model for

ci.

Add snew to Samples.

end while

Step-4: For each generated sample (snew) in Samples,

formulate a system message.

Combine snew with the system message to form a structured

data entry.

Step-5: Append all structured entries from Samples to DS.

Ensure DS does not contain duplicates.

potential risks and recommend preventive measures.” The

diversity and complexity of samples are ensured by iterating

until the number of unique samples, Snew, for each caption

reaches a predefined limit K:

|Snew| < K (7)

Each new sample snew is generated using a language model

prompt: “You are generating data to train an LLM. Based

The dataset DS is compiled by appending all structured

entries from Samples, ensuring no duplicates in DS:

DS = DS ∪ Samples (9)

B. Fine-Tuning the base LLM

The initial input to the fine-tuned LLM for DefectTwin con-

sists of three elements: system messages (SM), user prompts,

and Virtual Prompt injections (VPI). We describe each of these

elements in detail.

As illustrated in Fig. 4, the process begins with a user

providing a simple trigger scenario: “Steel wheel shows a

radial crack.” This scenario is processed by the fine-tuned

LLM using system messages, user prompts, and the Visual

Prompting Interface (VPI). System messages, such as “You

are an expert railway component defect instructor,” provide

context. The user prompt describes the defect scenario. VPI

adds details like location, size, and depth, e.g., “A radial

crack, about two inches in length, is visible on the external

circumference of the steel wheel”.

The fine-tuned LLM integrates these inputs to create a

comprehensive multimodal input. This is then passed to a Text-

to-Image (TTI) model, generating a visual representation of the

6

Fig. 4. The fine-tuned Defect LLM integrates system messages and VPI to
generate a realistic depiction of a radial crack on a steel wheel.

defect. The diffusion model produces an image showing the

steel wheel with a visible radial crack, enhancing the realism

and accuracy of the defect depiction (Fig. 4). The final output

is more informative and precise, aiding in better visualization

and understanding of the defect.

C. Multimodal Processing

The tuned prompt is passed to multimodal diffusion models,

such as text-to-image, image-to-text, 2D image-to-3D, and

video-to-text. These models generate images, videos, or 3D

models that accurately depict the defects based on the tuned

prompt. The output of these models is passed to the Multi-

modal Processor. The primary task of this unit is to take the

output from the M 2 LLMs and transform it into a format

that is consumable for the end-user. This involves interpreting

various types of inputs, processing and transforming the gen-

erated data, and finally, outputting the results in a user-friendly

manner. We discuss the general workflow of the Multimodal

Processor concerning the two examples illustrated in Fig. 5 in

the context of a DefectTwin system.

1) Example 1 - Twining defect analysis process: Let us

consider an application to mimic the defect analysis of the

railway defect. As illustrated in Fig. 5a, DefectTwin acts

like an information twin by automating the decision-making

process by analyzing the video stream. In this example, the

AI inferencing engine receives multimodal inputs, including

a video stream and a user prompt. Based on this input

M 2 LLM in the DefectTwin framework make a decision.

However, the decision might not be in a format that’s easy

for the user to understand. The Multimodal Processor converts

this decision into a talking avatar, effectively communicating

complex information in a user-friendly manner.

(a)

(b)

Fig. 5. Use of Multimodal processor in DefectTwin (a) Example I: Defect
Analysis. (b) Example II: Predictive Visualization of Defect Characteristics.

2) Example 2- Texture Mapping and Visualization: In this

example, the M 2 LLM generates a defect texture based on

the user prompt. However, this raw texture might not be

directly usable. This is where the Multimodal Processor comes

into play. As you can observe in Fig. 5b, a texture mapping

algorithm is used to map the generated texture onto a base 3D

model. This allows for dynamic visualization of defects in a

simulated environment, enhancing the realism and usability of

the data.

7

D. AI User Interaction

Users interact with the fine-tuned LLM through a multi-

modal interface and provide feedback on the system’s per-

formance. This feedback can vary as follows. 1) Positive

hand, the fine-tuning function generates synthetic data using

the DLLMDS pipeline and performs fine-tuning using the

generated synthetic data to add more capabilities to the current

fine-tuned LLM.

or Negative Feedback. For example, positive feedback: “The

LLM accurately identified the cracks in the railway track

image.” and negative feedback: “The LLM failed to identify

the rust on the railway bolts.” 2) Score-based Feedback. For

example, 6 is scored on a scale of 1 to 10 for a response.

Because it was able to identify major defects but missed out

on minor ones. 3) Open-ended Feedback. E.g., Dissatisfaction:

“You gave unrealistic defect”. Refinement Need: “You should

be able to differentiate between different types of defects such

as cracks, rust, and mechanical wear.” 4) Mixed Feedback -

A score of 7 out of 10. “While it generally identifies major

defects, it struggles with minor defects and often misses rust

and small cracks”. The user-interaction mechanism within

DefectTwin is broken down as follows.

1) Feedback Processing: The feedback is input into an

Instant user feedback (instaUF) handling pipeline that incorpo-

rates an instruct-tuned LLM designed to handle feedback. The

instruct-tuned feedback LLM processes the feedback instantly.

Let (F) represent the feedback, where (F)can be a score or

textual feedback.

Based on the feedback, the system updates the message of

the employed M² LLM. Let (SM) represent the system

message output by the LLM, and SMnew) represent the

updated message.

The update function can be represented as:

SMnew = Update(SM, F) (10)

For example, if the LLM incorrectly identifies a crack in

the railway track, the engineer might provide feedback as:

a score of 1 out of 10, and a comment “Missed the small

cracks“. Based on this feedback the system message might

be instructed to pay more attention to the size of the defect.

2) Fine-Tuning Cycle: The diversity of fine-tined LLM

capabilities is required when the M² LLM cannot handle a

specific type of defect, new samples are generated based on

user feedback.

For example, if the LLM is fine-tuned on rust-based defects

and incapable of handling mechanical defects like cracks or

breaks, analyzing the user feedback new synthetic dataset is

generated, and the current fine-tuned LLM is re-fine-tuned

with new capability.

Each update builds on top of the previous model, retaining

past improvements while incorporating new refinements. Let

t represent the periodic update interval.

LLMt+1 = update(LLMt, SMnew) (11)

3) instaUF for Optimization: The instaUF pipeline is bro-

ken into two main components: the main function (see Algo-

ritm 2) and the fine-tuning function (See Algorithm 3).

The main function handles the main loop of the algorithm,

which collects user feedback, updates system parameters, and

decides when to call the fine-tuning function. On the other

Algorithm 2 Algorithm InstaUF - Main Function

Input:

• Fine-Tuned LLM (LLMi), System Message (SM), In-

struction (instruction)

• LLM settings parameters (LSP): Top-p (p), Top-k (k)

• Termination Criteria (tc), Fine-Tuning Interval

(ft interval)

• User Satisfaction Threshold (satisfaction threshold)

Output:

• Fine-Tuned LLM (LLMi+1) (only if fine-tuning oc-

curs)

• Updated System Message (SM), Updated Instruction

(instruction), Updated LSP

Initialize feedback vector (feedbacks) as an empty list.

Initialize iteration counter (counter) to 0.

Initialize user satisfaction score (satisfaction) to 100%.

while true do

Collect user feedback (F).

Append F to feedback vector (feedbacks).

Process feedback using the Feedback Processing Func-

tion: (SM, instruction, p′, k′, satisfaction) = Update(SM,

F, instruction).

Update system parameters (SM, instruction, p′, k′).

if satisfaction ¡ satisfaction threshold or counter reaches

ft interval then

Call Fine-Tune Function (LLM, Ds, p, k, feedbacks)

Reset feedback vector (feedbacks).

Reset satisfaction to 100% if it was below threshold.

Reset counter to 0 if interval was reached.

end if

Increment counter by 1.

if tc is met then

break

end if

end while

Return Updated LLM (only if fine-tuning occurred), SM,

instruction, and LSP (p′, k′)

Algorithm 3 Algorithm InstaUF - Fine-Tuning Function

Input:

• LLM, Synthetic Dataset (Ds), Top-p (p), Top-k (k),

Feedback Vector (feedbacks)

Output:

• Fine-Tuned LLM (LLMi+1)

Generate synthetic dataset (Ds) using DLLMDS pipeline.
Fine-tune the LLM using (Ds): FineTune(LLM, Ds, p, k).
Set LLMi+1 to the fine-tuned LLM.

Return (LLMi+1)

8

Lemma 2. The Greedy Algorithm for Fine-Tuning LLM with

user feedback maximizes user satisfaction (S) at or near 100%

and minimizes the number of fine-tuning operations (FT).

Proof. We want to maximize S subject to the constraint that

FT is minimized. We can formulate this as a constrained

optimization problem:

IV. EXPERIMENT AND ANALYSIS

A. Data

In this research, we have employed both original 4 and

synthetic data5 to evaluate the performance and usefulness of

DefectTwin.

maximize S
S,FT

(12)

subject to FT ≤ T,

where T is the total number of iterations.

The Lagrangian for this problem is:

L(S, FT, λ) = S − λ(FT − T), (13)

where λ is the Lagrange multiplier.

Taking the partial derivatives and setting them equal to zero

gives the following conditions:

∂L
= 1 − 0 = 1, (14)

∂S
∂L

= −λ = 0, (15)
∂FT

∂L
= FT − T = 0. (16)

∂λ

Main Function: The main function can be represented by

the following iterative equation:

Fig. 6. Sample diversity achieved by employing DLLMDS pipeline.

• Raw Data: We utilized two primary datasets: the Cana-

dian Pacific Railway (CPR) Defect Dataset with 1000

defect images and 26 unique labels, and an Expanded

General Category Dataset with 150 samples of various

damaged railway components collected from open-source

images. The latter addresses the CPR dataset’s limited

diversity and preprocessed format.

• Synthetic Datasets for Fine-Tuning: To enhance our

datasets, we used the DLLMDS pipeline to generate the

Defect visual-instruct dataset containing visual instruc-

S =

(
100 if t%α = 0 or St−1 < β

(17) tions and responses related to defects and maintenance,
t

where:

f (S t−1 , Ft) otherwise and the Texture visual-instruct dataset, providing defect
texture visual response data.

• Test Data for Accuracy and Response Generation

• St is the user satisfaction score at iteration t,
• Ft is the feedback at iteration t,

• f (St−1, Ft) is the feedback processing function,

• α = ft interval is the fine-tuning interval,

• β = satisfaction threshold is the satisfaction threshold.

Fine-Tuning Function: The fine-tuning function can be

represented by the following equation:

LLMi+1 = FineTune(LLMi, Ds, p, k) (18)

where:

• LLMi is the fine-tuned LLM at iteration i,
• Ds is the synthetic dataset,
• p and k are the top-p and top-k parameters,

• FineTune(LLMi, Ds, p, k) is the fine-tuning function.

From equation (15), λ = 0 implies FT ≤ T is not

binding, so the algorithm does not always fine-tune every

iteration. While, from equation (16), FT = T implies the

algorithm fine-tunes exactly T times, contradicting the earlier

finding. The algorithm balances maximizing user satisfaction

and minimizing fine-tuning, resetting satisfaction to 100%

after fine-tuning and maintaining it above a threshold. It limits

fine-tuning to necessary times and regular intervals, forming

the core logic of Algorithms 3 and 4.

Evaluation: We evaluated our defect twin framework

using image-based defect detection with 100 images

each from the CPR and expanded datasets, video-based

defect identification with data from CPR and open-source

datasets, and response generation performance with text

prompts and multimodal inputs from publicly available

YouTube videos.

B. Evaluation Parameters

We utilized various evaluation metrics to assess the M 2
LLM-based AI inferencing components of DefectTwin. For the

defect detection task, we measured accuracy using Precision,

Recall, F1-score, and AUC (Area Under the Curve). To eval-

uate the relevance of the generated responses, we employed

Answer Relevance, Context Relevance, and ROUGE-L Score.

For assessing optimality, we measured latency and the number

of tokens generated. To determine the usefulness, we used a

scale of 1 to 10, following the approach presented in [9].

C. Experiment Setup

We developed the DefectTwin apps on Huggingface. The

Gradio framework facilitated an interactive interface for seam-

4Please download the kaggle dataset from here
5Please download our open-source dataset from here

https://www.kaggle.com/datasets/salmaneunus/railway-track-fault-detection
https://github.com/turna1/GenAI-For-Goods/tree/DATASETS-TO-BUILD-RAG-LLM-RAILWAY-DEFECT

9

(a) (b)

Fig. 7. Comparative Analysis of Rust Texture Simulation on Steel Freight Bodies Across Different Generative Models. (a)Model Comparisons for Simulating
Rust Textures in Varied Colors (b)3D Visualization of Rust Impact on Steel Freight Body

TABLE I

PERFORMANCE METRICS OF MODELS ON DIFFERENT MEDIA

(a) Performance on Image
Model In-Domain (Track, Assets) Zero-Shot (Infrastructure)

 Precision Recall F1-score AUC Precision Recall F1-score AUC
Instruct-BLIP 0.55 0.58 0.57 0.58 0.35 0.4 0.37 0.38
LLAVA-Instruct 0.85 0.86 0.85 0.86 0.45 0.45 0.47 0.48
GPT-4o 0.68 0.64 0.62 0.83 0.4 0.45 0.42 0.43
Gemini-Pro-Vision 0.88 0.88 0.88 0.89 0.48 0.5 0.49 0.5

Proposed Model 0.92 0.93 0.92 0.93 0.6 0.65 0.62 0.63

(b) Performance on Video
Model In-domainn(Track, Assets) Zero-Shot

 Precision Recall F1-score AUC Precision Recall F1-score AUC
Instruct-BLIP 0.3 0.35 0.32 0.34 0.2 0.25 0.22 0.24
GPT-4o 0.65 0.68 0.65 0.67 0.52 0.52 0.51 0.53
LLAVA 0.35 0.4 0.37 0.39 0.25 0.3 0.27 0.29
Gemini-Pro-Vision 0.71 0.72 0.71 0.73 0.45 0.48 0.45 0.47

Proposed Model 0.76 0.74 0.77 0.77 0.55 0.58 0.55 0.57

less input of textual and visual data, providing a comprehen-

sive platform to evaluate the performance of M 2 LMM in

handling multimodal tasks. The apps were tested on an ipad-

10th generation with a capacity of 64 GB memory, 10.9 inch

multi-touch display with ips technology, A14 bionic chip, 6-

core CPU, 4-core graphics, and 16-core neural engine. In our

experiments, we evaluated both unimodal (GPT-3.5) [28] and

multimodal LLMs (Instruct-BLIP [29], GPT-4 [10], LLAVA

[24], Gemini-Pro-Vision [11], and our Proposed Model). The

unimodal LLM handled text-based tasks, while the multimodal

models processed images and videos alongside text, enhancing

accuracy and contextual relevance.

We selected models based on their ability to manage defect

descriptions, case-based scenarios, and maintenance contexts,

considering both in-domain and zero-shot generalizability. For

zero-shot evaluation, railway infrastructures like bridges and

stations served as out-of-domain components, while defect

categories included wheels, gates, doors, rail surfaces, and

tracks.

D. Ablation Study

We conducted several ablations to evaluate the impact of

DefectTwin in the context of CE and railway defect inspection

incorporating multimodal data.

1) Diversity (Does DefectTwin Achieve Diversity in Syn-

thetic Examples?): The proposed synthetic dataset generation

approach for fine-tuning significantly enhances the diversity

in defect-specific characteristics compared to the basic visual

captioning method. As illustrated in Fig. 6, the DLLMDS

pipeline effectively captures a wide range of defect characteris-

tics in the synthetic dataset, surpassing the coverage of the base

dataset generated through simple visual captioning. The impact

of fine-tuning on texture generation for defect visualization is

shown in the ablation study where ’rust on steel’ was generated

in three colors—Normal, Blue, and Green (Fig. 7).

Fig. 7a displays outputs from three models: Dalle-3, Sta-

ble DiffusionXL, and DefectTwin. While Dalle-3 and Stable

DiffusionXL produced stylized rust effects, DefectTwin gen-

erated realistic rust textures with intricate details and varie-

gated coloration, closely resembling real-world rust patterns.

The fine-tuning process captured the defect textures visibly

(Fig. 7b), providing high-fidelity visual simulations beneficial

for maintenance planning and predictive diagnostics.

2) Generalizability (Does DefectTwin identify unseen data

and classes with high precision and consistency?): Our

proposed model, DefectTwin, demonstrates robust accuracy

across multimodal data, excelling in both image and video-

based defect detection. For image data, DefectTwin achieved

10

(a) (b)

(c) (d)

Fig. 8. (a) Surface Defect Visualization by DefectTwin (b) Surface Defect Visualization by Existing Model (c) Screw Removal Prompt (d) Crack Enhancement
Prompt

top scores in in-domain scenarios with a precision of 0.92,

recall of 0.93, F1-score of 0.92, and AUC of 0.93 (Table Ia).

It also showed adaptability in zero-shot scenarios with a

precision of 0.6 and an F1 score of 0.62. In video data, Defect-

Twin maintained high performance in familiar contexts with a

precision of 0.76, recall of 0.74, and F1-score of 0.77, though

performance declined in zero-shot scenarios to a precision

and F1-score of 0.55, highlighting the challenges of video

analysis (Table Ib). This comprehensive evaluation confirms

DefectTwin’s strong accuracy and capability in handling both

familiar and novel environments across multimodal data.

3) QoE (Does DefectTwin Adapt Based on User Needs):

We conducted this ablation based on the following examples:

• Surface Defect Visualization: Initially, DefectTwin’s

visualization of “a railway tunnel with surface defect”

lacked detail. After fine-tuning, it produced detailed

and realistic textures accurately depicting surface defects

(Fig.8a). In contrast, Dalle-3 and SDXL-Light provided

visually appealing but less accurate results (Fig. 8b).

• Crack Enhancement Prompt: Before fine-tuning, De-

fectTwin’s output for adding cracks was not detailed

enough (Fig.8c). Post-fine-tuning, it accurately added

pronounced and detailed crack textures, significantly en-

hancing defect visibility. Compared to this, other models

struggled to achieve the same level of detail.

Fig. 9. Response utility for rail defect inspection.

• Screw Removal Prompt: DefectTwin effectively re-

moved screws while maintaining the integrity of the

underlying image (Fig.8d), demonstrating superior perfor-

mance. Dalle-3 provided an aesthetically pleasing but less

accurate response, while Instruct pix-2-pix offered more

practical outputs but was not as precise as DefectTwin.

4) Usefuleness and Relevance (Does DefectTwin generate

useful and relevant responses?):

• Usefulness The Fig. 9 illustrates that DefectTwin out-

11

TABLE II

ANSWER RELEVANCE ACROSS DIFFERENT TASK: MULTIMODAL

(a) Defect Detection
Model Answer Relevance Context Relevance ROUGE-L Score
Instruct-BLIP 0.65 0.37 0.31
GPT-4o 0.43 0.52 0.54
LLAVA 0.45 0.58 0.36
Gemini-Pro-vision 0.41 0.51 0.21

Proposed 0.79 0.97 0.94

(b) Defect Risk Identification
Model Answer Relevance Context Relevance ROUGE-L Score
Instruct-BLIP 0.17 0.20 0.22
GPT-4o 0.36 0.49 0.32
LLAVA 0.59 0.52 0.21
Gemini-Pro-Vision 0.31 0.67 0.25

Proposed 0.78 0.95 0.92

(c) Maintenance Recommendation
Model Answer Relevance Context Relevance ROUGE-L Score
Instruct-BLIP 0.35 0.22 0.476
GPT-4o 0.51 0.35 0.62
LLAVA 0.27 0.43 0.33
Gemini-Pro-Vision 0.35 0.53 0.28

Proposed Model 0.46 0.86 0.84

(a) (b)

Fig. 10. (a) Latency and Token Generation: Text-To-Text (b) Latency VS Number of Video Frames Processing

performed existing models in terms of helpfulness, rele-

vance, accuracy, and level of detail scoring above 8 out

of most of the criteria.

• Relevance Table II demonstrates that comparatively De-

fectTwin performed better than related models in most of

the tasks. However, relevance decreased significantly for

measurement or maintenance-related tasks. Because the

fine fine-tuning focused more on defect description rather

than monitoring.

5) Optimality (Does DefectTwin offer optimality to be in-

cluded in CE products?): Performance on Token Generation

and Latency: DefectTwin achieves an optimal balance with

a moderate number of tokens and lower latency compared

to GPT-4O (see Fig. 10b), maintaining processing efficiency

essential for real-time applications in consumer electronics.

DefectTwin exhibits a consistent but lower increase in

latency with more frames than Instruct-BLIP [18] and LLAVA

(see Fig. 10a), demonstrating better scalability for continuous

data streams like video monitoring in consumer electron-

ics.DefectTwin’s efficient token management reduces compu-

tational load and minimizes irrelevant responses, crucial for

accurate and fast processing in consumer electronics systems

with limited resources.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced DefectTwin, integrating LLMs

with DT technology to enhance visual defect inspection in

12

railway components. Our multimodal and M² AI inferenc-

ing pipeline achieved high precision in defect identification.

DefectTwin faces challenges in handling maintenance-related

prompts. Therefore, in further extension of this work, we aim

to improve synthetic data generation and explore RAG-based

approaches for better accuracy and reliability. Although we ob-

tained satisfactory usefulness through LLM-based evaluation,

detailed user evaluation with domain-specific stakeholders still

needs to be addressed. Based on the outcomes of this research,

we anticipate DefectTwin as a potential solution to be extended

in similar fields like- automotive and aerospace.

REFERENCES

[1] S. Sai, A. Rastogi, and V. Chamola, “Digital twins for consumer
electronics,” IEEE Consumer Electronics Magazine, 2023.

[2] J. Liu and C. Zhang, “Effective analysis and intelligent decision making
of consumer electronics data based on machine learning under smart
city,” IEEE Transactions on Consumer Electronics, 2023.

[3] S. Ghaboura, R. Ferdousi, F. Laamarti, C. Yang, and A. El Saddik,
“Digital twin for railway: A comprehensive survey,” IEEE Access,
vol. 11, pp. 120237–120257, 2023.

[4] R. Ferdousi, F. Laamarti, C. Yang, and A. E. Saddik, “A reusable ai-
enabled defect detection system for railway using ensembled cnn,” arXiv
preprint arXiv:2311.14824, 2023.

[5] V. Caˆmara, R. Mendonca-Neto, A. Silva, and L. Cordovil, “A large
language model approach to sql-to-text generation,” in 2024 IEEE
International Conference on Consumer Electronics (ICCE), pp. 1–4,
2024.

[6] K. Suzuki, J. Cai, J. Li, T. Yamauchi, and K. Tei, “A comparative
evaluation on melody generation of large language models,” in 2023
IEEE International Conference on Consumer Electronics-Asia (ICCE-
Asia), pp. 1–4, 2023.

[7] H. Chung, S. Hyun, and Y.-G. Ha, “Battlefield situation awareness using
pretrained generative llm,” in 2024 IEEE International Conference on
Big Data and Smart Computing (BigComp), pp. 397–398, 2024.

[8] J. Yan, V. Yadav, S. Li, L. Chen, Z. Tang, H. Wang, V. Srinivasan,
X. Ren, and H. Jin, “Backdooring instruction-tuned large language
models with virtual prompt injection,” in Proceedings of the 2024
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (Volume 1:
Long Papers), pp. 6065–6086, 2024.

[9] H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction tuning,”
Advances in neural information processing systems, vol. 36, 2024.

[10] P. Taveekitworachai, M. C. Gursesli, F. Abdullah, S. Chen, F. Cala,
A. Guazzini, A. Lanata, and R. Thawonmas, “Journey of chatgpt from
prompts to stories in games: the positive, the negative, and the neutral,”
in 2023 IEEE 13th International Conference on Consumer Electronics
- Berlin (ICCE-Berlin), pp. 202–203, 2023.

[11] G. Team, R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac, J. Yu, R. Soricut,
J. Schalkwyk, A. M. Dai, A. Hauth, et al., “Gemini: a family of highly
capable multimodal models,” arXiv preprint arXiv:2312.11805, 2023.

[12] H. Azzuni, S. Jamal, and A. Elsaddik, “utalk: Bridging the gap between
humans and ai,” in 2024 IEEE International Conference on Consumer
Electronics (ICCE), pp. 1–4, 2024.

[15] C. K. Wu, C.-T. Cheng, Y. Uwate, G. Chen, S. Mumtaz, and K. F.
Tsang, “State-of-the-art and research opportunities for next-generation
consumer electronics,” IEEE Transactions on Consumer Electronics,
vol. 69, no. 4, pp. 937–948, 2022.

[13] R. Ferdousi, C. Yang, M. A. Hossain, F. Laamarti, M. S. Hossain,
and A. E. Saddik, “Generative model-driven synthetic training image
generation: An approach to cognition in railway defect detection,”
Cognitive Computation, pp. 1–16, 2024.

[14] A. El Saddik, F. Laamarti, and M. Alja’Afreh, “The potential of digital
twins,” IEEE Instrumentation & Measurement Magazine, vol. 24, no. 3,
pp. 36–41, 2021.

[16] W. Liu, X. Xu, L. Qi, X. Zhou, H. Yan, X. Xia, and W. Dou,
“Digital twin-assisted edge service caching for consumer electronics
manufacturing,” IEEE Transactions on Consumer Electronics, 2024.

[17] P. Bhattacharya, V. K. Prasad, A. Verma, D. Gupta, A. Sapsomboon,

W. Viriyasitavat, and G. Dhiman, “Demystifying chatgpt: An in-depth
survey of openai’s robust large language models,” Archives of Compu-
tational Methods in Engineering, pp. 1–44, 2024.

[18] T. Brooks, A. Holynski, and A. A. Efros, “Instructpix2pix: Learning
to follow image editing instructions,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 18392–
18402, 2023.

[19] J. Zhang, Y. Zhang, M. Chu, S. Yang, and T. Zu, “A llm-based simulation
scenario aided generation method,” in 2023 IEEE 7th Information
Technology and Mechatronics Engineering Conference (ITOEC), vol. 7,
pp. 1350–1354, 2023.

[20] J. Jeon, B. Jeong, and Y.-S. Jeong, “Intelligent resource scaling for
container based digital twin simulation of consumer electronics,” IEEE
Transactions on Consumer Electronics, 2023.

[21] R. Rassin, S. Ravfogel, and Y. Goldberg, “Dalle-2 is seeing double:
flaws in word-to-concept mapping in text2image models,” arXiv preprint
arXiv:2210.10606, 2022.

[22] W. Ma, C. Yang, and C. Ka¨stner, “(why) is my prompt getting worse?
rethinking regression testing for evolving llm apis,” in 2024 IEEE/ACM
3rd International Conference on AI Engineering – Software Engineering
for AI (CAIN), pp. 166–171, 2024.

[23] S. Parida, S. Sekhar, S. Panda, S. Jena, A. Parida, S. K. Sahoo, and S. R.
Dash, “Olive: An instruction following llama model for odia language,”
in 2023 IEEE Silchar Subsection Conference (SILCON), pp. 1–7, 2023.

[24] J. Huang, J. Zhang, K. Jiang, H. Qiu, and S. Lu, “Visual instruction
tuning towards general-purpose multimodal model: A survey,” arXiv,
2023.

[25] M. Deitke, D. Schwenk, J. Salvador, L. Weihs, O. Michel, E. VanderBilt,
L. Schmidt, K. Ehsani, A. Kembhavi, and A. Farhadi, “Objaverse: A
universe of annotated 3d objects,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 13142–
13153, 2023.

[26] B. Li, Y. Zhang, L. Chen, J. Wang, F. Pu, J. Yang, C. Li, and Z. Liu,
“Mimic-it: Multi-modal in-context instruction tuning,” arXiv preprint
arXiv:2306.05425, 2023.

[27] S. Abdel-Khalek, A. D. Algarni, G. Amoudi, S. Alkhalaf, F. M.
Alhomayani, and S. Kathiresan, “Leveraging ai-generated content for
synthetic electronic health record generation with deep learning-based
diagnosis model,” IEEE Transactions on Consumer Electronics, pp. 1–1,
2024.

[28] P. Mishra, M. Warr, and R. Islam, “Tpack in the age of chatgpt and
generative ai,” Journal of Digital Learning in Teacher Education, vol. 39,
no. 4, pp. 235–251, 2023.

[29] H. Liu, C. Li, Y. Li, and Y. J. Lee, “Improved baselines with visual
instruction tuning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 26296–26306, 2024.

