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Abstract—A Digital Twin (DT) replicates objects, processes, or 
systems to enable real-time monitoring, simulation, and predictive 
maintenance. Recent advancements, such as Large Language 
Models (LLMs), have revolutionized traditional AI systems and 
show immense potential when combined with DT in various 
industrial applications. Railway defect inspection is one such 
application, which traditionally requires a large volume of defect 
samples to identify underlying patterns. However, training a new 
defect classifier with limited samples often leads to overfitting 
and poor performance on unseen defects. This challenge can 
be addressed by integrating pre-trained LLMs into DT, as 
specialized LLMs for defect inspection inherently reduce the need 
for extensive sample data. We propose an integration between 
LLM and DT for railway defect inspection and enable its usage 
in consumer electronics (CE) devices. Accordingly, we introduce 
DefectTwin, which utilizes a multimodal and multi-model (M²) 
LLM-based AI pipeline to analyze seen and unseen visual defects 
in railways. Using this application, a railway agent can mimic 
the tasks of an expert defect analyst using CE devices (e.g., 
tablets). The multimodal processor in DefectTwin ensures that 
the response generated from the AI pipeline is in a consumable 
format. An instant user feedback handling mechanism (instaUF) 
enables the Quality-of-Experience (QoE) feedback-loop within 
DefectTwin. The proposed M² LLM outperforms existing base 
models by achieving high precision (between 0.76-0.93) across 
multimodal input (text, image, video) that characterizes pre- 
trained defects. Additionally, we obtained better performance 
in zero-shot generalizability for unseen defects. We also evalu- 
ated the latency, token count, and usefulness of the responses 
generated by the DefectTwin application on a CE device. To the 
best of our knowledge, DefectTwin is the first LLM-integrated 
DT for railway defect inspection. 

Index Terms—Digital Twin, Large Models, Large Language 
Models, Consumer Electronics, Visual Railway Defect Inspection, 
Multimodal LLM, Multimodal AI 

 

I. INTRODUCTION 

DT – Artificial Intelligence (AI) integrated DTs deployed in 

Consumer electronics (CE) are beneficial for various industrial 

applications [1], [2]. For instance, applications like railway 

defect inspection have recently gained attention [3] in this area. 

However, existing AI-integrated systems often struggle with 

the complexity of visual inspection tasks [4]. Such complexity 

mainly arises from the limited defect samples, leading to 

suboptimal performance [5], [6]. 

Recent advancements like Large Language Models (LLMs), 

have revolutionized traditional AI systems by excluding the 

need for rapid training on huge amounts of samples. The 

characteristics of LLM to learn continuously from new data 

enhance the performance in unseen classification tasks (also 

known as zero-shot generalizability). This motivates us to im- 

prove the accuracy, efficiency, and generalizability of railway 

defect detection by combining DT and LLM. Therefore, in 

this research, we develop a case where LLM-integrated DT 

applications are designed for use in CE devices. 

In this research, we introduce DefectTwin as an LLM- 

integrated DT system for visual railway defect inspection 1. 

DefectTwin uses a synthetic dataset generation pipeline to 

create a custom visual instruct dataset, which fine-tunes a 

base language model (e.g., GPT-3.5) [7] into a specialized 

Defect LLM. The proposed system enhances user prompts 

by integrating Virtual Prompt Injections (VPI) [8] and system 

messages [9]. This enhanced prompt is processed by the fine- 

tuned LLM to generate a detailed visual defect description. 

Multimodal models use this description to create [10] or 

understand [11] images, videos, or 3D models of defects. 

An Integrated Multimodal Processor [12] ensures user-friendly 

output consumed on CE device. In addition, the Instant User 

Feedback (InstaUF) Pipeline iteratively improves the perfor- 

mance through user feedback. 

The key research question investigates whether LLM- 

integrated DTs can enhance defect detection accuracy and 

maintenance efficiency in railway systems. The apps proto- 

typed for DefectTwin are tested on a CE device (iPad 10th 

generation). The experiment involves synthetic dataset gen- 

eration, fine-tuning, and validation using real-world datasets 

from the Canadian Pacific Railway (CPR) and other sources. 

We observed that DefectTwin achieves a precision of 0.93 in 

identifying railway defects, outperforming existing models. 

Our research includes an ablation study addressing the 

impact of integrating text, image, and video data on defect 

detection accuracy, the effectiveness of synthetic datasets, 

the enhancement of model performance and user satisfac- 

tion through the QoE feedback loop, and the comparative 

performance of the proposed algorithms. Results confirm 

DefectTwin as an effective solution for automated visual rail 

defect inspection. Additionally, we proved the optimality of 

the proposed algorithms theoretically. 

1Please find the codes and data used in this research 
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Key contributions of this paper include: 

1) Introducing a Multimodal and Multimodel (M²) LLM- 

based AI inferencing Pipeline in DT for a specialized 

case- visual railway defect inspection. 

2) Proposing a pipeline for generating synthetic datasets to 

address data scarcity, improving zero-shot generalizabil- 

ity in domain-specific LLM fine-tuning, which was not 

addressed in our previous work [13]. 

3) Designing Algorithm for Instant User Feedback Han- 

dling Loop for continuous model refinement. 

4) Employing a multimodal processor to refine generative 

media to increase usefulness (e.g., enhanced defect anal- 

ysis). 

Subsequent sections cover the literature review in Section 

II, methodology in Section III, experimental setup and results 

in Section IV, discussion, and conclusion, detailing the 

development and validation of the DefectTwin system, its 

implications, and future research directions in section V. 

 

II. LITERATURE REVIEW 

In this section, we synthesize the literature on integrating 

LLMs into DT systems for visual railway defect analysis 2. 

 

A. DT and AI 

DT technology presents transformative opportunities by 

allowing manufacturers to simulate real-world conditions dig- 

itally, enhancing product design, development, and mainte- 

nance [14]–[16]. DTs enable virtual simulation of objects and 

processes to optimize risk and cost, offering personalized user 

experiences through continuous data collection and analysis 

from consumer devices [6]. 

Advancements in AI have led to the development of LLMs 

like ChatGPT and GPT-4, capable of addressing complex 

problems [17]. Integrating LLMs and Visual LLMs (VLMs) 

[18] into CE can revolutionize device design and usage, opti- 

mizing production processes and predicting equipment failures 

[6]. Enhanced user interaction and voice-activated assistant 

accuracy are key benefits [12], [19]. However, challenges such 

as sustainability, data privacy, and on-device LLMs must be 

addressed [7]. 

 

B. Multimodal LLMs for AI-Integrated DT 

As the demand for intelligent automation continues to grow, 

AI-integrated DT and LLMs are expected to play a pivotal 

role in the future of inspection in manufacturing and other 

applications [7] [5]. While the general impact of LLMs and 

DT has been discussed in the context of consumer electronics 

[5] [19] [20], evaluations of LLM-integrated DT in specialized 

domains remain limited. 

In this research, we focus on a specific use case: visual 

railway defect inspection using a CE device. We use a tablet to 

explore and evaluate the DefectTwin apps. So that the impact 

of LLM-integrated DT in resource-constrained CE devices 

can be understood. The following sections detail various 

2Please check the paper collection here. 

LLM methods we identified as applicable to our target use 

case, highlighting their potential in railway defect inspection 

through enhanced precision and efficiency. 

1) Text-to-Image Models: While text-to-image models [21] 

offer a potential solution for generating synthetic data, creating 

effective prompts for specialized domains remains challenging 

[22]. Instruction tuning, which fine-tunes models to respond 

to specific prompts, can enhance the relevance and usefulness 

of generated images for specialized tasks [5]. 

2) Hybrid Instruction-Following Agents: There are two 

main approaches to building instruction-following agents [23]: 

(i) Multimodel, which coordinates various models via frame- 

works like LangChain or LLMs (e.g., Visual ChatGPT), and 

(ii) Multimodal, which can support multimodal input-output. 

A hybrid instruction-following agent that integrates both mul- 

timodal and multimodel approaches is ideal for comprehensive 

task handling [24]. 

3) High-Quality Instructions: High-quality instructions are 

crucial for fine-tuning multitasking agents. Recent trends 

involve using GPT-generated instructions (e.g., LLAVA [9], 

Objaverse [25], and MIMIC-IT [26]) to improve performance 

by helping models better understand the context and specific 

domain requirements. To ensure the quality of generated 

instruction-response pairs, the Syphus pipeline [26] incorpo- 

rates system messages, visual annotations, and in-context ex- 

amples as prompts for ChatGPT. This approach helps maintain 

high standards in instruction generation. 
4) Positioning Attacks: Positioning attacks, where agents 

receive continuous prompts without relevant visual details, 

can degrade performance. The Virtual Prompt Injection (VPI) 

[8] pipeline addresses this issue using trigger instructions 

and virtual prompts to ensure the agent captures the correct 

context. 

5) Incorporating Human Feedback for Quality Assurance: 

Hybrid reinforcement learning models that incorporate human 

feedback (HF) and AI feedback are essential for ensuring the 

quality of responses, especially in specialized domains like 

railway defect inspection [24]. 

C. Requirements and Challenges 

Key requirements and challenges in deploying LLM- 

integrated DT systems for visual defect inspection include: 

• Data Scarcity: Rich synthetic data generation is essential 

because it helps overcome the limitations of real-world 

data availability, thereby improving model performance 

and increasing the diversity of training examples. This 

ensures that the models can generalize better to a wide 

variety of defect scenarios [13], [27]. 

• Effective Prompts: Instruction tuning is crucial as it en- 

hances the relevance and usefulness of generated images 

for specialized tasks. By fine-tuning the prompts, LLMs 

can produce more accurate and task-specific outputs, 

which is particularly important in specialized domains 

like defect inspection [5]. 

• Hybrid Instruction-Following Agents: Multimodal and 

multi-model capabilities are vital because they com- 

binedly improve the in-context response generation ca- 

pacity of LLMs. This means that the LLMs can better 

https://github.com/turna1/Awesome-Multmodal_LLM
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understand and respond to complex inputs that include 

multiple data types (e.g., text, images, videos), resulting 

in more accurate and context-aware defect analysis and 

predictions. 

 

III. METHODOLOGY 

This section first presents an overview of the DefectTwin 

framework followed by its components and algorithms. 

The proposed DefectTwin system is an LLM-integrated DT 

approach designed to enhance railway defect detection, predic- 

tive maintenance, and user interaction. The system comprises 

several interconnected components, as illustrated in Fig. 1 
3. As in Fig. 1, different sensing devices are employed to 

collect defect parameters such as images and metadata from 

the defective physical railway components. This data is trans- 

mitted to data storage and data pre-processing units, which are 

bidirectionally connected to the AI inferencing engine. This 

connection ensures high defect identification accuracy through 

data augmentation and synthetic data generation. Users interact 

with the system via a multimodal interface, utilizing different 

forms of DT (e.g. information-twin and predictive-twin) for 

defect analysis and maintenance. The information twin makes 

decisions by analyzing existing data, such as identifying the 

LLM to generate a descriptive caption using a popular visual 

captioning technique known as the template-based caption 

generation approach. For our specific application, we devel- 

oped a prompt template in collaboration with domain experts 

to capture essential visual defect characteristics, particularly 

those challenging to capture in real-life scenarios. 

2) Rephrasing Algorithm for Diversity: The template-based 

caption serves as input for rephrasing, as given in Algorithm 1. 

This technique transforms the prompt into new, intricate illus- 

trations that accurately depict the specified elements missing 

in the original caption. By utilizing this procedure, we produce 

a significant number of synthetic examples, providing rich 

training examples for tuning the custom LLM. The Defect 

LLM dataset (DLLMDS) Generation Pipeline aims to solve 

the challenge of data scarcity in deploying LLM-based DT 

solutions. 

Lemma 1. We can define the problem as a constrained 

optimization problem where we want to maximize the diversity 

of the samples (D) and minimize the reconstruction loss (L). 

Proof. The objective function aims to maximize the diversity 

of the samples (D) and minimize the reconstruction loss (L). 

This can be represented as: 

type of defect found. In contrast, the predictive twin anticipates 

future states in a simulative manner, like predicting additional 

cracks on the track before they occur. The system includes 
a Quality-of-Experience (QoE) feedback loop to continuously 

 

 

 
where: 

maximize 
D,L 

D − λL (1) 

refine AI models based on user feedback. 

The proposed M 2 LLM-based AI Inferencing Pipeline aims 

to generate a high-fidelity in-domain synthetic dataset for fine- 

tuning a base LLM to improve the performance of multimodal 

decoders used for various purposes, such as text-to-image, 

video-to-text, and image-to-text. The multimodal approach 

supports various data types, while the multimodel approach 

uses task-specific models (like video-to-text or text-to-image) 

accessed through a fine-tuned LLM. The pipeline involves 

several steps as illustrated in Fig. 2, including generating 

synthetic data, fine-tuning the base LLM, and integrating 

multimodal processing to dynamically map generated defect 

textures to 3D models of rail components. The key components 

in the proposed AI inferencing pipeline are described as 

follows. 

 

A. Synthetic Defect LLM Dataset Generation 

In our proposed synthetic defect generation pipeline shown 

in Fig. 3, we leverage an LLM with visual captioning capa- 

bilities to create synthetic images with defects. The different 

tasks in this step are as follows: 

1) Template-based Caption Generation: We chose GPT- 

4, which has been utilized for creating prominent visual- 

instruction datasets such as LLAVA, MIMIC IT, Objaverse, 

and Sceneverse [26]. Furthermore, from the literature, we 

found that LLM fine-tuned using rephrased samples achieved 

high accuracy. As demonstrated in Fig. 3, the process starts 

by taking a raw image as input and passing it through the 

3Please see the animated version for better understanding. 

• D is the diversity of the samples, 

• L is the reconstruction loss, 

• λ is a trade-off parameter that balances the two objectives. 

Each sample must be unique and more complex than the 

previous ones. The total number of samples must be less than 

or equal to K. These constraints can be represented as: 

 

snew ̸= sold, ∀sold ∈ Samples and |Samples| ≤ K (2) 

The Lagrangian for this problem is: 

L(D, L, λ, µ) = D − λL + µ(K − |Samples|)  (3) 

Where µ is the Lagrange multiplier for the constraint. 

The optimality conditions for this problem are obtained by 

setting the partial derivatives of the Lagrangian with respect 

to D, L, and µ to zero: 

∂L 
= 1 − µ = 0 (4) 

∂D 

∂L 
= −λ = 0 (5) 

∂L 

∂L 
= K − |Samples| = 0 (6) 

∂µ 

These conditions provide a mathematical proof for the al- 

gorithm’s objective. The algorithm achieves this by generating 

unique and complex samples until it reaches the maximum 

number of samples (K), while ensuring that the reconstruction 

loss is minimized. 

https://github.com/turna1/DefectTwin/blob/main/defect_twin_framework.gif
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Fig. 1. High-level framework of LLM-based DefectTwin 

 

 

Fig. 2. The AI inferencing pipeline for railway defect detection. 

 
 

 

 

The Algorithm 1, leverages template-based captions to gen- 

erate a diverse and complex dataset. Each caption is expanded 

into multiple detailed samples using a language model, and 

each sample is paired with a system message to guide the 

fine-tuned DefectTwin LLM. Let us consider the following 

example: 

Given a list of template-based captions: captions = “A crack 

on the rail”, “Corrosion at the joint”, “A missing bolt” 

The algorithm generates multiple unique and complex sam- 

ples for each caption. For example, for the caption “A crack 

on the rail”, the generated samples could be: 

Samples = s1, s2, s3. where, s1 = “A crack 3 inches long 

on the rail surface, perpendicular to the track direction.”; s2 

= “A diagonal crack on the rail with a depth of 2mm, located 

near the joint.”; s3 = “A longitudinal crack running along the 

rail track, extending 5 inches.” 

Each sample is paired with a system message: System 

Message = “Given the defect description provided, identify 
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Fig. 3. Synthetic data generation pipeline. 

 
 

Algorithm 1 Rephrasing Algorithm for Diversity  

Input: A list of template-based captions from defect im- 
ages: captions = [c1, c2, ..., cn] 

Output: A dataset with multiple diverse and complex sam- 

ples per caption, each accompanied by a system message. 

on the initial description: ci, create a prompt/response pair 

ensuring the response is more complex and diverse than 

previous ones.” 

Unique and complex samples snew are added to the set 

Samples: 

Step-1: Create an empty list: DS = [] 

Step-2: For each caption (ci) in captions, create an 
if (s  

new 
is unique and complex) ⇒ add s  

new to Samples (8) 

empty set for unique samples: Samples = {} 
Step-3: 

while the number of samples is less than K do 

Generate a new sample (snew) using a language model for 

ci. 

Add snew to Samples. 

end while 

Step-4: For each generated sample (snew) in Samples, 

formulate a system message. 

Combine snew with the system message to form a structured 

data entry. 

Step-5: Append all structured entries from Samples to DS. 

Ensure DS does not contain duplicates. 
 

 

potential risks and recommend preventive measures.” The 

diversity and complexity of samples are ensured by iterating 

until the number of unique samples, Snew, for each caption 

reaches a predefined limit K: 

|Snew| < K (7) 

Each new sample snew is generated using a language model 

prompt: “You are generating data to train an LLM. Based 

The dataset DS is compiled by appending all structured 

entries from Samples, ensuring no duplicates in DS: 

DS = DS ∪ Samples (9) 

 

B. Fine-Tuning the base LLM 

The initial input to the fine-tuned LLM for DefectTwin con- 

sists of three elements: system messages (SM), user prompts, 

and Virtual Prompt injections (VPI). We describe each of these 

elements in detail. 

As illustrated in Fig. 4, the process begins with a user 

providing a simple trigger scenario: “Steel wheel shows a 

radial crack.” This scenario is processed by the fine-tuned 

LLM using system messages, user prompts, and the Visual 

Prompting Interface (VPI). System messages, such as “You 

are an expert railway component defect instructor,” provide 

context. The user prompt describes the defect scenario. VPI 

adds details like location, size, and depth, e.g., “A radial 

crack, about two inches in length, is visible on the external 

circumference of the steel wheel”. 

The fine-tuned LLM integrates these inputs to create a 

comprehensive multimodal input. This is then passed to a Text- 

to-Image (TTI) model, generating a visual representation of the 
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Fig. 4. The fine-tuned Defect LLM integrates system messages and VPI to 
generate a realistic depiction of a radial crack on a steel wheel. 

 

 

defect. The diffusion model produces an image showing the 

steel wheel with a visible radial crack, enhancing the realism 

and accuracy of the defect depiction (Fig. 4). The final output 

is more informative and precise, aiding in better visualization 

and understanding of the defect. 

 

C. Multimodal Processing 

The tuned prompt is passed to multimodal diffusion models, 

such as text-to-image, image-to-text, 2D image-to-3D, and 

video-to-text. These models generate images, videos, or 3D 

models that accurately depict the defects based on the tuned 

prompt. The output of these models is passed to the Multi- 

modal Processor. The primary task of this unit is to take the 

output from the M 2 LLMs and transform it into a format 

that is consumable for the end-user. This involves interpreting 

various types of inputs, processing and transforming the gen- 

erated data, and finally, outputting the results in a user-friendly 

manner. We discuss the general workflow of the Multimodal 

Processor concerning the two examples illustrated in Fig. 5 in 

the context of a DefectTwin system. 

1) Example 1 - Twining defect analysis process: Let us 

consider an application to mimic the defect analysis of the 

railway defect. As illustrated in Fig. 5a, DefectTwin acts 

like an information twin by automating the decision-making 

process by analyzing the video stream. In this example, the 

AI inferencing engine receives multimodal inputs, including 

a video stream and a user prompt. Based on this input 

M 2 LLM in the DefectTwin framework make a decision. 

However, the decision might not be in a format that’s easy 

for the user to understand. The Multimodal Processor converts 

this decision into a talking avatar, effectively communicating 

complex information in a user-friendly manner. 

(a) 

 

 
(b) 

Fig. 5. Use of Multimodal processor in DefectTwin (a) Example I: Defect 
Analysis. (b) Example II: Predictive Visualization of Defect Characteristics. 

 
 

 

 

 

2) Example 2- Texture Mapping and Visualization: In this 

example, the M 2 LLM generates a defect texture based on 

the user prompt. However, this raw texture might not be 

directly usable. This is where the Multimodal Processor comes 

into play. As you can observe in Fig. 5b, a texture mapping 

algorithm is used to map the generated texture onto a base 3D 

model. This allows for dynamic visualization of defects in a 

simulated environment, enhancing the realism and usability of 

the data. 



7 
 

D. AI User Interaction 

Users interact with the fine-tuned LLM through a multi- 

modal interface and provide feedback on the system’s per- 

formance. This feedback can vary as follows. 1) Positive 

hand, the fine-tuning function generates synthetic data using 

the DLLMDS pipeline and performs fine-tuning using the 

generated synthetic data to add more capabilities to the current 

fine-tuned LLM. 

or Negative Feedback. For example, positive feedback: “The   

LLM accurately identified the cracks in the railway track 

image.” and negative feedback: “The LLM failed to identify 

the rust on the railway bolts.” 2) Score-based Feedback. For 

example, 6 is scored on a scale of 1 to 10 for a response. 

Because it was able to identify major defects but missed out 

on minor ones. 3) Open-ended Feedback. E.g., Dissatisfaction: 

“You gave unrealistic defect”. Refinement Need: “You should 

be able to differentiate between different types of defects such 

as cracks, rust, and mechanical wear.” 4) Mixed Feedback - 

A score of 7 out of 10. “While it generally identifies major 

defects, it struggles with minor defects and often misses rust 

and small cracks”. The user-interaction mechanism within 

DefectTwin is broken down as follows. 

1) Feedback Processing: The feedback is input into an 

Instant user feedback (instaUF) handling pipeline that incorpo- 

rates an instruct-tuned LLM designed to handle feedback. The 

instruct-tuned feedback LLM processes the feedback instantly. 

Let ( F ) represent the feedback, where ( F )can be a score or 

textual feedback. 

Based on the feedback, the system updates the message of 

the employed M² LLM. Let ( SM ) represent the system 

message output by the LLM, and SMnew) represent the 

updated message. 

The update function can be represented as: 

 

SMnew = Update(SM, F ) (10) 

For example, if the LLM incorrectly identifies a crack in 

the railway track, the engineer might provide feedback as: 

a score of 1 out of 10, and a comment “Missed the small 

cracks“. Based on this feedback the system message might 

be instructed to pay more attention to the size of the defect. 

2) Fine-Tuning Cycle: The diversity of fine-tined LLM 

capabilities is required when the M² LLM cannot handle a 

specific type of defect, new samples are generated based on 

user feedback. 

For example, if the LLM is fine-tuned on rust-based defects 

and incapable of handling mechanical defects like cracks or 

breaks, analyzing the user feedback new synthetic dataset is 

generated, and the current fine-tuned LLM is re-fine-tuned 

with new capability. 

Each update builds on top of the previous model, retaining 

past improvements while incorporating new refinements. Let 

t represent the periodic update interval. 

LLMt+1 = update(LLMt, SMnew) (11) 

3) instaUF for Optimization: The instaUF pipeline is bro- 

ken into two main components: the main function (see Algo- 

ritm 2) and the fine-tuning function (See Algorithm 3). 

The main function handles the main loop of the algorithm, 

which collects user feedback, updates system parameters, and 

decides when to call the fine-tuning function. On the other 

Algorithm 2 Algorithm InstaUF - Main Function  

Input: 

• Fine-Tuned LLM (LLMi), System Message (SM), In- 

struction (instruction) 

• LLM settings parameters (LSP): Top-p (p), Top-k (k) 

• Termination Criteria (tc), Fine-Tuning Interval 

(ft interval) 

• User Satisfaction Threshold (satisfaction threshold) 

Output: 

• Fine-Tuned LLM (LLMi+1) (only if fine-tuning oc- 

curs) 

• Updated System Message (SM), Updated Instruction 

(instruction), Updated LSP 

Initialize feedback vector (feedbacks) as an empty list. 

Initialize iteration counter (counter) to 0. 

Initialize user satisfaction score (satisfaction) to 100%. 

while true do 

Collect user feedback (F). 

Append F to feedback vector (feedbacks). 

Process feedback using the Feedback Processing Func- 

tion: (SM, instruction, p′, k′, satisfaction) = Update(SM, 

F, instruction). 

Update system parameters (SM, instruction, p′, k′). 

if satisfaction ¡ satisfaction threshold or counter reaches 

ft interval then 

Call Fine-Tune Function (LLM, Ds, p, k, feedbacks) 

Reset feedback vector (feedbacks). 

Reset satisfaction to 100% if it was below threshold. 

Reset counter to 0 if interval was reached. 

end if 

Increment counter by 1. 

if tc is met then 

break 

end if 

end while 

Return Updated LLM (only if fine-tuning occurred), SM, 

instruction, and LSP (p′, k′) 
 

 

 

Algorithm 3 Algorithm InstaUF - Fine-Tuning Function  

Input: 

• LLM, Synthetic Dataset (Ds), Top-p (p), Top-k (k), 

Feedback Vector (feedbacks) 

Output: 

• Fine-Tuned LLM (LLMi+1) 

Generate synthetic dataset (Ds) using DLLMDS pipeline. 
Fine-tune the LLM using (Ds): FineTune(LLM, Ds, p, k). 
Set LLMi+1 to the fine-tuned LLM. 

Return (LLMi+1) 
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Lemma 2. The Greedy Algorithm for Fine-Tuning LLM with 

user feedback maximizes user satisfaction (S) at or near 100% 

and minimizes the number of fine-tuning operations (FT). 

Proof. We want to maximize S subject to the constraint that 

FT is minimized. We can formulate this as a constrained 

optimization problem: 

IV. EXPERIMENT AND ANALYSIS 

A. Data 

In this research, we have employed both original 4 and 

synthetic data5 to evaluate the performance and usefulness of 

DefectTwin. 

 

maximize S 
S,FT 

 
(12) 

subject to  FT ≤ T, 

where T is the total number of iterations. 

The Lagrangian for this problem is: 

L(S, FT, λ) = S − λ(FT − T ), (13) 

where λ is the Lagrange multiplier. 

Taking the partial derivatives and setting them equal to zero 

gives the following conditions: 

∂L 
= 1 − 0 = 1, (14) 

∂S 
∂L 

= −λ = 0, (15) 
∂FT 

∂L 
= FT − T = 0. (16) 

∂λ 

Main Function: The main function can be represented by 

the following iterative equation: 

 
 

 

 
 

 

 

 

 

Fig. 6. Sample diversity achieved by employing DLLMDS pipeline. 

 

• Raw Data: We utilized two primary datasets: the Cana- 

dian Pacific Railway (CPR) Defect Dataset with 1000 

defect images and 26 unique labels, and an Expanded 

General Category Dataset with 150 samples of various 

damaged railway components collected from open-source 

images. The latter addresses the CPR dataset’s limited 

diversity and preprocessed format. 

• Synthetic Datasets for Fine-Tuning: To enhance our 

datasets, we used the DLLMDS pipeline to generate the 

Defect visual-instruct dataset containing visual instruc- 

S = 

(
100 if t%α = 0 or St−1 < β 

(17) tions and responses related to defects and maintenance, 
t 

 
 

where: 

f (S t−1 , Ft)  otherwise and the Texture visual-instruct dataset, providing defect 
texture visual response data. 

• Test Data for Accuracy and Response Generation 

• St is the user satisfaction score at iteration t, 
• Ft is the feedback at iteration t, 

• f (St−1, Ft) is the feedback processing function, 

• α = ft interval is the fine-tuning interval, 

• β = satisfaction threshold is the satisfaction threshold. 

Fine-Tuning Function: The fine-tuning function can be 

represented by the following equation: 

LLMi+1 = FineTune(LLMi, Ds, p, k) (18) 

where: 

• LLMi is the fine-tuned LLM at iteration i, 
• Ds is the synthetic dataset, 
• p and k are the top-p and top-k parameters, 

• FineTune(LLMi, Ds, p, k) is the fine-tuning function. 

From equation (15), λ = 0 implies FT ≤ T is not 

binding, so the algorithm does not always fine-tune every 

iteration. While, from equation (16), FT = T implies the 

algorithm fine-tunes exactly T times, contradicting the earlier 

finding. The algorithm balances maximizing user satisfaction 

and minimizing fine-tuning, resetting satisfaction to 100% 

after fine-tuning and maintaining it above a threshold. It limits 

fine-tuning to necessary times and regular intervals, forming 

the core logic of Algorithms 3 and 4. 
 

 

Evaluation: We evaluated our defect twin framework 

using image-based defect detection with 100 images 

each from the CPR and expanded datasets, video-based 

defect identification with data from CPR and open-source 

datasets, and response generation performance with text 

prompts and multimodal inputs from publicly available 

YouTube videos. 

 

B. Evaluation Parameters 

We utilized various evaluation metrics to assess the M 2 
LLM-based AI inferencing components of DefectTwin. For the 

defect detection task, we measured accuracy using Precision, 

Recall, F1-score, and AUC (Area Under the Curve). To eval- 

uate the relevance of the generated responses, we employed 

Answer Relevance, Context Relevance, and ROUGE-L Score. 

For assessing optimality, we measured latency and the number 

of tokens generated. To determine the usefulness, we used a 

scale of 1 to 10, following the approach presented in [9]. 

 

C. Experiment Setup 

We developed the DefectTwin apps on Huggingface. The 

Gradio framework facilitated an interactive interface for seam- 

4Please download the kaggle dataset from here 
5Please download our open-source dataset from here 

https://www.kaggle.com/datasets/salmaneunus/railway-track-fault-detection
https://github.com/turna1/GenAI-For-Goods/tree/DATASETS-TO-BUILD-RAG-LLM-RAILWAY-DEFECT
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(a) (b) 

Fig. 7. Comparative Analysis of Rust Texture Simulation on Steel Freight Bodies Across Different Generative Models. (a)Model Comparisons for Simulating 
Rust Textures in Varied Colors (b)3D Visualization of Rust Impact on Steel Freight Body 

 
TABLE I 

PERFORMANCE METRICS OF MODELS ON DIFFERENT MEDIA 
 

 

 

(a) Performance on Image 
Model In-Domain (Track, Assets) Zero-Shot (Infrastructure) 

 Precision Recall F1-score AUC Precision Recall F1-score AUC 
Instruct-BLIP 0.55 0.58 0.57 0.58 0.35 0.4 0.37 0.38 
LLAVA-Instruct 0.85 0.86 0.85 0.86 0.45 0.45 0.47 0.48 
GPT-4o 0.68 0.64 0.62 0.83 0.4 0.45 0.42 0.43 
Gemini-Pro-Vision 0.88 0.88 0.88 0.89 0.48 0.5 0.49 0.5 

Proposed Model 0.92 0.93 0.92 0.93 0.6 0.65 0.62 0.63 

(b) Performance on Video 
Model In-domainn(Track, Assets) Zero-Shot 

 Precision Recall F1-score AUC Precision Recall F1-score AUC 
Instruct-BLIP 0.3 0.35 0.32 0.34 0.2 0.25 0.22 0.24 
GPT-4o 0.65 0.68 0.65 0.67 0.52 0.52 0.51 0.53 
LLAVA 0.35 0.4 0.37 0.39 0.25 0.3 0.27 0.29 
Gemini-Pro-Vision 0.71 0.72 0.71 0.73 0.45 0.48 0.45 0.47 

Proposed Model 0.76 0.74 0.77 0.77 0.55 0.58 0.55 0.57 

 

less input of textual and visual data, providing a comprehen- 

sive platform to evaluate the performance of M 2 LMM in 

handling multimodal tasks. The apps were tested on an ipad- 

10th generation with a capacity of 64 GB memory, 10.9 inch 

multi-touch display with ips technology, A14 bionic chip, 6- 

core CPU, 4-core graphics, and 16-core neural engine. In our 

experiments, we evaluated both unimodal (GPT-3.5) [28] and 

multimodal LLMs (Instruct-BLIP [29], GPT-4 [10], LLAVA 

[24], Gemini-Pro-Vision [11], and our Proposed Model). The 

unimodal LLM handled text-based tasks, while the multimodal 

models processed images and videos alongside text, enhancing 

accuracy and contextual relevance. 

We selected models based on their ability to manage defect 

descriptions, case-based scenarios, and maintenance contexts, 

considering both in-domain and zero-shot generalizability. For 

zero-shot evaluation, railway infrastructures like bridges and 

stations served as out-of-domain components, while defect 

categories included wheels, gates, doors, rail surfaces, and 

tracks. 

 

D. Ablation Study 

We conducted several ablations to evaluate the impact of 

DefectTwin in the context of CE and railway defect inspection 

incorporating multimodal data. 

1) Diversity (Does DefectTwin Achieve Diversity in Syn- 

thetic Examples?): The proposed synthetic dataset generation 

approach for fine-tuning significantly enhances the diversity 

in defect-specific characteristics compared to the basic visual 

captioning method. As illustrated in Fig. 6, the DLLMDS 

pipeline effectively captures a wide range of defect characteris- 

tics in the synthetic dataset, surpassing the coverage of the base 

dataset generated through simple visual captioning. The impact 

of fine-tuning on texture generation for defect visualization is 

shown in the ablation study where ’rust on steel’ was generated 

in three colors—Normal, Blue, and Green (Fig. 7). 

Fig. 7a displays outputs from three models: Dalle-3, Sta- 

ble DiffusionXL, and DefectTwin. While Dalle-3 and Stable 

DiffusionXL produced stylized rust effects, DefectTwin gen- 

erated realistic rust textures with intricate details and varie- 

gated coloration, closely resembling real-world rust patterns. 

The fine-tuning process captured the defect textures visibly 

(Fig. 7b), providing high-fidelity visual simulations beneficial 

for maintenance planning and predictive diagnostics. 

2) Generalizability (Does DefectTwin identify unseen data 

and classes with high precision and consistency?): Our 

proposed model, DefectTwin, demonstrates robust accuracy 

across multimodal data, excelling in both image and video- 

based defect detection. For image data, DefectTwin achieved 
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(a) (b) 

 

(c) (d) 

Fig. 8. (a) Surface Defect Visualization by DefectTwin (b) Surface Defect Visualization by Existing Model (c) Screw Removal Prompt (d) Crack Enhancement 
Prompt 

 

top scores in in-domain scenarios with a precision of 0.92, 

recall of 0.93, F1-score of 0.92, and AUC of 0.93 (Table Ia). 

It also showed adaptability in zero-shot scenarios with a 

precision of 0.6 and an F1 score of 0.62. In video data, Defect- 

Twin maintained high performance in familiar contexts with a 

precision of 0.76, recall of 0.74, and F1-score of 0.77, though 

performance declined in zero-shot scenarios to a precision 

and F1-score of 0.55, highlighting the challenges of video 

analysis (Table Ib). This comprehensive evaluation confirms 

DefectTwin’s strong accuracy and capability in handling both 

familiar and novel environments across multimodal data. 

3) QoE (Does DefectTwin Adapt Based on User Needs): 

We conducted this ablation based on the following examples: 

• Surface Defect Visualization: Initially, DefectTwin’s 

visualization of “a railway tunnel with surface defect” 

lacked detail. After fine-tuning, it produced detailed 

and realistic textures accurately depicting surface defects 

(Fig.8a). In contrast, Dalle-3 and SDXL-Light provided 

visually appealing but less accurate results (Fig. 8b). 

• Crack Enhancement Prompt: Before fine-tuning, De- 

fectTwin’s output for adding cracks was not detailed 

enough (Fig.8c). Post-fine-tuning, it accurately added 

pronounced and detailed crack textures, significantly en- 

hancing defect visibility. Compared to this, other models 

struggled to achieve the same level of detail. 

 

 

 
Fig. 9. Response utility for rail defect inspection. 

 

 

• Screw Removal Prompt: DefectTwin effectively re- 

moved screws while maintaining the integrity of the 

underlying image (Fig.8d), demonstrating superior perfor- 

mance. Dalle-3 provided an aesthetically pleasing but less 

accurate response, while Instruct pix-2-pix offered more 

practical outputs but was not as precise as DefectTwin. 

4) Usefuleness and Relevance (Does DefectTwin generate 

useful and relevant responses?): 

• Usefulness The Fig. 9 illustrates that DefectTwin out- 
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TABLE II 

ANSWER RELEVANCE ACROSS DIFFERENT TASK: MULTIMODAL 
 

 

 

(a) Defect Detection 
Model Answer Relevance Context Relevance ROUGE-L Score 
Instruct-BLIP 0.65 0.37 0.31 
GPT-4o 0.43 0.52 0.54 
LLAVA 0.45 0.58 0.36 
Gemini-Pro-vision 0.41 0.51 0.21 

Proposed 0.79 0.97 0.94 

(b) Defect Risk Identification 
Model Answer Relevance Context Relevance ROUGE-L Score 
Instruct-BLIP 0.17 0.20 0.22 
GPT-4o 0.36 0.49 0.32 
LLAVA 0.59 0.52 0.21 
Gemini-Pro-Vision 0.31 0.67 0.25 

Proposed 0.78 0.95 0.92 

(c) Maintenance Recommendation 
Model Answer Relevance Context Relevance ROUGE-L Score 
Instruct-BLIP 0.35 0.22 0.476 
GPT-4o 0.51 0.35 0.62 
LLAVA 0.27 0.43 0.33 
Gemini-Pro-Vision 0.35 0.53 0.28 

Proposed Model 0.46 0.86 0.84 

 

 

(a) (b) 

Fig. 10. (a) Latency and Token Generation: Text-To-Text (b) Latency VS Number of Video Frames Processing 

 

performed existing models in terms of helpfulness, rele- 

vance, accuracy, and level of detail scoring above 8 out 

of most of the criteria. 

• Relevance Table II demonstrates that comparatively De- 

fectTwin performed better than related models in most of 

the tasks. However, relevance decreased significantly for 

measurement or maintenance-related tasks. Because the 

fine fine-tuning focused more on defect description rather 

than monitoring. 

5) Optimality (Does DefectTwin offer optimality to be in- 

cluded in CE products?): Performance on Token Generation 

and Latency: DefectTwin achieves an optimal balance with 

a moderate number of tokens and lower latency compared 

to GPT-4O (see Fig. 10b), maintaining processing efficiency 

essential for real-time applications in consumer electronics. 

DefectTwin exhibits a consistent but lower increase in 

latency with more frames than Instruct-BLIP [18] and LLAVA 

(see Fig. 10a), demonstrating better scalability for continuous 

data streams like video monitoring in consumer electron- 

ics.DefectTwin’s efficient token management reduces compu- 

tational load and minimizes irrelevant responses, crucial for 

accurate and fast processing in consumer electronics systems 

with limited resources. 

 

V. CONCLUSION AND FUTURE WORK 

In this paper, we introduced DefectTwin, integrating LLMs 

with DT technology to enhance visual defect inspection in 
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railway components. Our multimodal and M² AI inferenc- 

ing pipeline achieved high precision in defect identification. 

DefectTwin faces challenges in handling maintenance-related 

prompts. Therefore, in further extension of this work, we aim 

to improve synthetic data generation and explore RAG-based 

approaches for better accuracy and reliability. Although we ob- 

tained satisfactory usefulness through LLM-based evaluation, 

detailed user evaluation with domain-specific stakeholders still 

needs to be addressed. Based on the outcomes of this research, 

we anticipate DefectTwin as a potential solution to be extended 

in similar fields like- automotive and aerospace. 
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