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Abstract—Texture image generation has been studied for vari- 
ous applications, including gaming and entertainment. However, 
context-specific realistic texture generation for industrial applica- 
tions, such as generating defect textures on railway components, 
remains unexplored. A mobile-friendly, LLM-based tool that 
generates fine-grained defect characteristics offers a solution 
to the challenge of understanding the impact of defects from 
actual occurrences. We introduce TextureMeDefect, an innovative 
tool leveraging an LLM-based AI-Inferencing engine. The tool 
allows users to create realistic defect textures interactively on 
images of railway components taken with smartphones or tablets. 
We conducted a multifaceted evaluation to assess the relevance 
of the generated texture, time, and cost in using this tool on 
iOS and Android platforms. We also analyzed the software 
usability score (SUS) across three scenarios. TextureMeDefect 
outperformed traditional image generation tools by generating 
meaningful textures faster, showcasing the potential of AI-driven 
mobile applications on consumer-grade devices. 

Index Terms—AI, LLM, Mobile Device, AI-tool, Defect, Rail- 
way, Texture. 

 

I. INTRODUCTION 

Texture image generation is not an innovation, especially 

in well-established domains such as gaming, art, and product 

design [1]. However, the generation of fine-grained, specific 

textures remains an underexplored field. Defect texture gen- 

eration, in particular, is a domain-specific task that requires 

capturing subtle details rather than regular texture patterns [2]. 

In industrial inspection fields, such as railway infrastructure 

inspection, defect texture generation is essential for accurately 

understanding defects and preventing potential hazards [3]. 

These tasks demand the ability to capture fine-grained defect 

information (e.g., size, orientation, color, etc.) while providing 

a user-friendly, flexible solution for near real-time [4], on- 

site texture generation [5], without causing actual damage 

or manually designing defect textures, which can be time- 

consuming. 

Existing methods for generating defect textures struggle to 

balance accuracy, flexibility, and practicality, especially on 

mobile devices [6]. Stochastic algorithms [7] [8] often fail 

because they rely on random processes that cannot capture 

complex, unusual texture patterns. Traditional AI-based tools 

also fall short, producing unrealistic defect textures due to 

hallucination and lack of context [3]. This challenge is partic- 

ularly significant for rail components, where accurate visual 

descriptions of defect textures are crucial [9]. 

To address these gaps, we present TextureMeDefect 1, a 

cross-platform web tool that leverages LLMs to generate real- 

istic defect textures directly on mobile devices. A base LLM 

is fine-tuned using a high-quality synthetic dataset generated 

using our proposed pipeline. Then the fine-tined model refines 

user-provided prompts, ensuring they accurately encapsulate 

defect characteristics like location, size, and orientation. These 

refined prompts are fed into a text-to-image generation model, 

and the resulting texture undergoes further processing for 

seamless integration with 3D models for visualization. 

Through rigorous evaluation on a range of mobile devices, 

we assess the quality and relevance (accuracy) of the generated 

textures; the latency of the generation process, and the overall 

user experience. Our results demonstrate that TextureMeDefect 

surpasses existing text-to-image generation models in terms of 

consistency and accuracy, attributed to our innovative LLM- 

based approach. Furthermore, the software usability score 

(SUS) underscores the effectiveness and limitations of the 

proposed tool across three different scenarios. 

The key contributions of this paper are three folds: i) 

to design and develop a synthetic defect texture generation 

pipeline 2, ii) The creation of a multimodal instruction- 

following defect dataset which captures the intricate details 

of various defects. iii) The design and development of 

TextureMeDefect 3, an LLM-based tool for generating 

realistic defect textures on mobile devices. 

 

The remainder of this paper is organized as follows. Sec- 

tion II provides a summary of related work in texture genera- 

tion and AI applications for industrial inspections. Section III 

elaborates on the methodology behind TextureMeDefect, in- 

 
1Click to watch the promo 
2Click to use the code and create your own customized dataset 
3Click to download the dataset. 
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Fig. 1: System Architecture of TextureMeDefect: An LLM-Based Tool for Defect Texture Generation on Mobile Devices 

 

cluding the dataset creation, model fine-tuning, and texture 

generation pipeline. Section IV presents the experimental setup 

and results of our multifaceted evaluation. Finally, Section V 

concludes the paper with a discussion of the implications of 

our work and future research directions. 

II. RELATED WORK 

In this section, we outline the work focused on texture 

generation. As there are no specific tools to generate defect 

texture, we also studied related work to generate images using 

LLM models. 

A. Texture Generation in Literature 

Traditional approaches often fall short of comprehensively 

addressing these combined requirements [10]. Non-AI-based 

methods, such as procedural modeling and image manipulation 

techniques, can be computationally expensive and lack the 

adaptability to handle a wide variety of defect types and 

component geometries [8]. 

B. AI-based tools for image generation 

Although AI-based techniques show promise, they often 

rely on limited or domain-specific datasets, hindering their 

generalizability and accuracy [11]. Current multimodal LLMs, 

such as DALLE-3 [12], InstructPix2Pix [13] , and SDXL [14], 

have shown promise in various domains, including health- 

care, and creative content generation [15]. However, tools 

using these models often struggle to capture the fine-grained, 

context-specific details required for domain-specific image 

generation [16] [17]. For instance, a common defect image 

like a ‘crack on the rail track’ might be generated accurately 

by GPT-4, but creating the crack texture in detail is not as 

precise. For training or simulation purposes, such textures are 

extremely important in modeling defect characteristics on a 3D 

model [18]. Additionally, traditional image generation tools 

are computationally intensive [6], rendering them impractical 

for use on resource-constrained mobile devices [15] in terms 

of texture generation time and cost-per-token. 

C. Gaps and Requirements 

Based on the above study, we conclude that while there are 

efforts in the literature for surface or body texture generation, 

the evaluation of a texture generation tool on mobile devices, 

as well as custom domain texture generation like defect texture 

generation on railway components, is a rare use case to 

explore. 

III. METHODS 

The system architecture depicted in Fig. 2, showcases the 

design of TextureMeDefect. TextureMeDefect is designed as 

a multimodal defect texture generation tool to be deployed 

in mobile devices like-smartphone or tablet. The breakdown 

of the architecture along with the details of the proposed AI- 

inferencing engine, is in the following sections. 

A. Multimodal User Interaction Interface (MUII) 

The system is designed to be interactive, allowing users to 

generate defect textures through a multimodal interface. The 

user can interact with the system via mobile devices through 

gesture, touch, and keyboard input. The user sends a request 

to the AI-inferencing engine and consumes the output that 

the AI-inferencing engine produces by processing the request 

through this MUII. Let us understand the role of the MUII in 

TextureMeDefect through the following example scenarios. 

In Scenario-1 (Library-Based Selection), users select prede- 

fined materials and defects from a library to generate textures 



 

 

Fig. 2: Multimodal Instruction Following Synthetic Dataset 

Generation Pipeline for Defect Texture 

 

using pre-trained models; in Scenario-2 (Creative Prompt- 

based Generation), users write prompts to describe desired 

textures, which the system refines and generates; and in 

Scenario-3 (Image-Based Generation), users upload images 

and specify defects to visualize them on the material, enabling 

a simulative understanding of defects on real-life components. 

B. AI Inferencing Engine 

At the core of the system is the AI inferencing engine, which 

processes all user inputs and requests for defect generation. It 

operates in the following steps: 

1) Step-1(Synthetic Dataset Generation): We leverage 

the capabilities of GPT-4 to generate a synthetic dataset 

consisting of image-caption pairs. The proposed dataset 

generation pipeline processes an input image and uses a 

prompt template designed to make GPT-4 capture the 

visual characteristics of defect textures. These visual 

components are selected based on existing literature on 

railway defect inspection and texture generation [9]. The 

generated captions are then passed to Algorithm 1 , 

which has already been applied in one of our ongoing 

research projects [18]. The algorithm produces concise 

and diverse samples for each caption and aggregates 

them with a corresponding system message. By compil- 

ing these samples into a JSON file, we create the defect 

texture multimodal instruction-following dataset. Since 

defect samples in railway components are rare, the al- 

gorithm generates a variety of samples for each caption, 

ensuring sufficient data for fine-tuning a customized 

LLM specialized in defect texture-related knowledge. 

2) Step 2 (Base LLM Fine-tuning): We fine-tune a GPT- 

3 model on the defect texture focused synthetic dataset, 

following the principle that models trained on data 

generated or revised by similar models tend to achieve 

superior performance [11]. Fine-tuning is performed it- 

eratively, with multiple passes over the dataset to ensure 

that the model adapts to the variety of defect detection. 

3) Step 3 (Prompt Tuning): User-provided prompts, 

whether textual descriptions or annotations on captured 

images, are refined using the fine-tuned GPT-3 model. 

This ensures that the prompts accurately capture the de- 

 
 

Algorithm 1 Texture Description Rephrasing Algorithm 
 

Input: A list of texture-based captions from defect images: 

captions = [c1, c2, ..., cn] 

Output: A dataset with diverse texture descriptions per 

caption, each associated with a system message. 

Step-1: Create an empty list: TextureDS = [] 

Step-2: For each texture caption (ci) in captions, 

create an empty set for unique rephrased descriptions: 
TextureSamples = {} 
Step-3: 

while the number of texture samples is less than K do 

Generate a new texture description (tnew) using a language 

model based on ci. 

Add tnew to TextureSamples. 

end while 

Step-4: For each generated texture description (tnew) in 

TextureSamples, formulate a system message describ- 

ing its generation process or characteristics. 

Combine tnew with the system message to form a structured 

data entry. 

Step-5: Append all structured entries from 

TextureSamples to TextureDS. Ensure TextureDS 

does not contain duplicates. 
 

 

 

 

 

 

 

 

Fig. 3: Multimodal Instruction Following Synthetic Dataset 

Generation Pipeline for Defect Texture 

 

 

sired defect characteristics, leading to more precise and 

relevant texture generation. For Example: User Input: 

”crack on the rail” Tuned Prompt: ”A transverse crack, 

approximately 2 inches long, located on the head of the 

rail, with slight rust discoloration around the edges.” By 

generating the spectific prompt we target to capture the 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Multimodal Processor for Formatting the Generated 

Texture into User’s Consumable Format 

 

visual details of the texture while prompting an image 

generation model. 

4) Step 4 (Multimodal Image Generation): The multi- 

modal instruction following dataset enables the image 

generation model to create defect textures by accurately 

capturing essential texture components such as cracks, 

wear, or decay. In this research, we adopt the Multimodel 

agent concept, where a fine-tuned LLM is used to 

interface with multiple image generation models. For 

example, to handle Scenario-1 and Scenario-2 in Fig.2, 

we use the SDXL model for text-to-image generation. 

Meanwhile, for Scenario-3 in Fig.2, we utilize the In- 

structPix2Pix model, which can process both image and 

text inputs. 

5) Step 5 (Multimodal Processing): Once a defect texture 

is generated, it may not always be ready for direct 

application to a 3D model. The system includes image- 

processing algorithms for resizing and scaling, convert- 

ing the textures into standardized formats for 3D model 

integration as depicted in Fig. 3. The final processed 

texture is displayed on the user’s mobile device, allowing 

them to visualize the simulated defect on the captured 

image or apply it to a 3D model for further inspection 

or analysis. 

IV. EXPERIMENT AND RESULTS 

We conducted a multifaceted evaluation of the proposed 

approach for the TextureMeDefect tool. The following are the 

details of the experimental procedures and findings. 

A. Experiment-1: Relevance of Output 

We compared the qualitative output of the proposed model 

with similar models. It is to be noted that the other mod- 

Fig. 5: Latency of Texture Image Generation for three sce- 

narios. Scenario-1: Predefined prompt, Scenario-2: Custom 

Prompt and Scenario-3: Inpaint Prompt 

 

 

els were also accessed via an interface through Replicate 

Playground. So that the impact of our designed interface for 

human-ai interaction can be understood. 

As depicted in Fig. 4, for all three scenarios, our pro- 

posed tool TextureMeDefect captured the fine-grained details 

to address the user’s request more appropriately than other 

models. For scenario-1, the base model SDXL generated 

texture on a small freight, while DALLE-3 generated cre- 

ative art on the texture. Because none of these models are 

customized for defect texture details specifically, this makes 

these textures unrealistic to apply directly to a 3D model. 

A similar result is seen for the custom prompt-based texture 

generation. Interestingly, for scenario-3, the instruct pix-2-pix 

base model generated an image with a tear (in the context of 

crying) due to hallucination. Additionally, for such advanced 

features to generate in-paint texture, DALLE-3 completely 

fails to produce relevant output. This is where our proposed 

AI-inferencing Engine, stands out compared to the existing 

solutions by generating realistic textures. 

 

B. Experiment-2: Latency 

We evaluated the latency of the texture image generation 

across the three scenarios and compared the performance with 

existing solution on iOS and Android platform. We employed 

a 10th Generation Ipad and Samsung Galaxy S24 phone during 

the evaluation. The results from this section onwards have been 

computed as the mean of 50 image generations per scenario, 

totaling 150 texture images. 

As depicted in Fig. 5, In Scenario 1, the proposed model 

outperforms SDXL and DALLE-3 on both iOS and Android. 

It has a latency of 15-20 seconds on iOS and 18-30 seconds 

on Android, compared to SDXL (22 seconds) and DALLE-3 

(28 seconds) on iOS, and 25 and 32 seconds on Android, 

respectively. In Scenario 2, the proposed model also leads 

with latencies of 18-30 seconds on both platforms. SDXL and 

DALLE-3 show higher latencies, especially on Android (30- 

35 seconds) compared to iOS (25-30 seconds). In Scenario 3, 

involving intricate image modifications, the proposed model 

performs best with latencies of 40-50 seconds on iOS and 50- 

60 seconds on Android. Instruct Pix-2-Pix has higher latencies 

(50-100 seconds on iOS and 60-120 seconds on Android), 

while DALLE-3 lags significantly (100 seconds on iOS and 

up to 120 seconds on Android). The complexity of tasks in 
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Fig. 6: Number of Generated Tokens for Tuning the prompt 

Base vs Fine-Tuned GPT-3 Model 

 

Scenario 3 increases computational demands, making the pro- 

posed model the most efficient. iOS consistently outperforms 

Android in latency across all three scenarios, with Android 

experiencing up to a 30% increase in latency. Although the 

Samsung Galaxy S24 features powerful hardware, Android’s 

more fragmented ecosystem and reliance on GPU processing 

may introduce additional overhead, leading to slower perfor- 

mance. 

C. Experiment-3: Token 

It can be observed form Fig. 6 The base model gener- 

ated around 180 tokens for Scenario-1, while the fine-tuned 

model generated significantly fewer tokens, around 50-150 

tokens.This large reduction can be attributed to the prompt 

tuning of the fine-tuned model, which is better equipped to 

generate concise, relevant responses. Since the proposed model 

was fine-tuned specifically for defect texture understanding, it 

filters out unnecessary information, leading to more efficient 

token usage. In Scenario 2, the complexity and variability of 

user prompts led to a higher token count for both models. 

However, the fine-tuned model still outperformed the base 

model, especially in handling prompts with extra information. 

Like Scenario 1, the fine-tuned model’s performance in Sce- 

nario 3 was markedly better, reducing the number of tokens 

substantially. 

D. Estimated Cost Analysis 

We estimate a cost analysis based on both token generation 

and processing time for each scenario using the fine-tuned 

model. As illustrated in the graphs in Fig. 5, 6, cost depends 

on these two factors, which vary significantly across the 

scenarios. We estimate the cost using the following formula: 

 

C = 
Σ 

(Tokensi × Cost per Tokeni) 

i=1 

Processing Timej is the processing time in seconds for the jth 
model. Cost per Secondj is the processing cost per second in 

the jth model. 

In Scenario-1, token generation is low (50-150 tokens) 

with a short processing time, resulting in the lowest over- 

all cost. This makes it highly cost-efficient. In Scenario-2, 

token generation increases to 100-260 tokens due to more 

complex prompts, raising the overall cost moderately despite 

manageable processing times. Scenario-3, although having a 

low token count (50-150 tokens), has significantly longer 

processing times (40-260 seconds). This extended duration 

increases the cost substantially, making it the most expensive 

scenario despite the lower token count. 

The analysis indicates that while token generation is a 

key factor, processing time plays a critical role in overall 

cost, particularly for scenarios involving more computation- 

ally demanding tasks like Scenario-3. Optimizing both token 

efficiency and processing speed is essential for reducing costs 

in large-scale applications. 

E. Usefuleness 

We conducted a software usability score (SUS) testing for 

each of the three scenarios aimed at defect texture image 

generation as follows. 

1) Participants: A total of 15 voluntary participants took 

part in the testing with following distribution-Android users: 

46.67%, iOS (iPad) users: 53.33%. 87.10% of the users are 

expert users who are familiar with generating image using 

AI-tools. Non-expert users are only 12.90% who have never 

peformed AI-based image generation. 

2) Procedure: The objective is to evaluate how users in- 

teract with TextureMeDefect through three scenarios stated 

earlier. Here are the modified 10 SUS questions to evalaute 

the TextureMeDefect tool, focusing on the defect texture gen- 

eration process: i) Q1:I found the process of generating defect 

textures using the input (dropdown/textbox/image upload but- 

ton) options to be straightforward. ii)Q2:I felt confident gen- 

erating defect textures by using this user interface. iii)Q3:The 

system’s instructions for generating textures through different 

modes (dropdown, prompt, image upload) were clear and easy 

to understand. iv)Q4: I believe that most users would learn 

to use this tool quickly. v)Q5:I felt that the time taken to 

generate defect textures was reasonable. vi)Q6: I found the 

system unnecessarily complex when using custom prompts. 

(Reverse scored) vii)Q7: I would need technical assistance to 

use the tool for generating defect textures. (Reverse scored) 

viii)Q8:The tool was smooth and responsive when generating 

textures from images and descriptions. ix)Q9:I found the 

generated defect textures to be realistic and aligned with my 

input. x)Q10:I would use this tool again for defect texture 

generation in the future. 

+ 
Σ 

Processing Timej 

j=1 

× Cost per Secondj

 
(1) 

3) Score interpretation: According to Fig. 7, The System 

Usability Scale (SUS) evaluates usability on a scale from 0 

to 100. In Scenario-1, the tool demonstrated good usability 

Where Tokensi is the number of tokens generated in the 

ith task. Cost per Tokeni is the cost per token in the ith task. 

with an average score close to 70%, particularly excelling 

in ease of use (Q1) and time taken (Q5), both rated 4.9, 



 

 

Fig. 7: Average SUS score per question across three scenarios 

 

Fig. 8: Average SUS score per question across three scenarios 

on different platforms 

 

along with high confidence (Q2: 4.8) and realism of textures 

(Q9: 4.9). Scenario 2 scored lower, with an average of 55%, 

indicating issues with instruction clarity (Q3: 3.5) and tool 

complexity. Scenario-3, like Scenario-1, had a 70% average, 

with users rating ease of use (Q1: 4.9), time taken (Q5: 4.7), 

and confidence (Q2: 4.7) positively. However, complexity (Q6, 

reverse scored) and need for assistance (Q7, reverse scored) 

were slightly lower, suggesting some difficulty with advanced 

inputs. 

Similar to the token generation in Fig. 6, iOS users con- 

sistently rated the system higher across all scenarios, with a 

slight dip in Scenario-2 but a recovery in Scenario-3 due to 

better output quality despite the extended time (See Fig. 8. 

Android users experienced a noticeable decline in usability 

from Scenario 1 to Scenario 3, reflecting more challenges with 

input options and longer times to generate realistic outputs. 

V. CONCLUSION AND FUTURE WORK 

In this work, we designed, developed, and evaluated the 

first defect texture generation tool for mobile devices, Tex- 

tureMeDefect. We outperformed traditional image generation 

tools by following the best practices in designing the AI- 

inferencing engine. Our experiments demonstrate that Tex- 

tureMeDefect generates relevant and useful outputs in a shorter 

time compared to existing tools, though there is still room 

for improvement. The usability scores and quantitative results 

indicate that the custom prompt-based texture generation in- 

terface needs to be more user-friendly, as some participants 

found it difficult to generate textures after entering their own 

prompts. This step could be simplified in the interface and 

the latency for the inpaint texture image generation could be 

reduced in the future extension of this work. 
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