Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
import torch | |
# Load the model and tokenizer from Hugging Face | |
model_name = "KevSun/Personality_LM" | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Streamlit app | |
st.title("Personality Prediction App") | |
st.write("Enter your text below to predict personality traits:") | |
# Input text from user | |
user_input = st.text_area("Your text here:") | |
if st.button("Predict"): | |
if user_input: | |
# Tokenize input text | |
inputs = tokenizer(user_input, return_tensors="pt") | |
# Get predictions from the model | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# Extract the predictions | |
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
predictions = predictions[0].tolist() | |
# Display the predictions | |
labels = ["Extraversion", "Agreeableness", "Conscientiousness", "Neuroticism", "Openness"] | |
for label, score in zip(labels, predictions): | |
st.write(f"{label}: {score:.4f}") | |
else: | |
st.write("Please enter some text to get predictions.") | |