Spaces:
Runtime error
Runtime error
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL | |
from diffusers.utils import load_image | |
from PIL import Image | |
import torch | |
import numpy as np | |
import cv2 | |
controlnet_conditioning_scale = 0.5 # recommended for good generalization | |
controlnet = ControlNetModel.from_pretrained( | |
"diffusers/controlnet-canny-sdxl-1.0", | |
torch_dtype=torch.float16 | |
) | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
controlnet=controlnet, | |
vae=vae, | |
torch_dtype=torch.float16, | |
) | |
pipe.enable_model_cpu_offload() | |
low_threshold = 100 | |
high_threshold = 200 | |
def get_canny_filter(image): | |
if not isinstance(image, np.ndarray): | |
image = np.array(image) | |
image = cv2.Canny(image, low_threshold, high_threshold) | |
image = image[:, :, None] | |
image = np.concatenate([image, image, image], axis=2) | |
canny_image = Image.fromarray(image) | |
return canny_image | |
def process(input_image, prompt) | |
canny_image = get_canny_filter(input_image) | |
images = pipe( | |
prompt,image=image, controlnet_conditioning_scale=controlnet_conditioning_scale, | |
).images | |
return [canny_image,images[0]] | |
block = gr.Blocks().queue() | |
with block: | |
gr.Markdown("## ControlNet SDXL Canny") | |
gr.HTML(''' | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
This is a demo for ControlNet SDXL, which is a neural network structure to control Stable Diffusion XL model by adding extra condition such as canny edge detection. | |
</p> | |
''') | |
gr.HTML("<p>You can duplicate this Space to run it privately without a queue and load additional checkpoints. : <a style='display:inline-block' href='https://huggingface.co/spaces/RamAnanth1/controlnet-sdxl-canny?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a> </p>") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button(label="Run") | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') | |
ips = [input_image, prompt] | |
run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) | |
# examples_list = [ | |
# # [ | |
# # "bird.png", | |
# # "bird", | |
# # "Canny Edge Map" | |
# # ], | |
# # [ | |
# # "turtle.png", | |
# # "turtle", | |
# # "Scribble", | |
# # "best quality, extremely detailed", | |
# # 'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality', | |
# # 1, | |
# # 512, | |
# # 20, | |
# # 9.0, | |
# # 123490213, | |
# # 0.0, | |
# # 100, | |
# # 200 | |
# # ], | |
# [ | |
# "pose1.png", | |
# "Chef in the Kitchen", | |
# "Pose", | |
# # "best quality, extremely detailed", | |
# # 'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality', | |
# # 1, | |
# # 512, | |
# # 20, | |
# # 9.0, | |
# # 123490213, | |
# # 0.0, | |
# # 100, | |
# # 200 | |
# ] | |
# ] | |
# examples = gr.Examples(examples=examples_list,inputs = [input_image, prompt], outputs = [result_gallery], cache_examples = True, fn = process) | |
gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=RamAnanth1.ControlNet)") | |
block.launch(debug = True) |