Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
import os | |
pipe = pipeline('text-generation', model='daspartho/prompt-extend') | |
stable_diffusion = gr.Blocks.load(name="spaces/runwayml/stable-diffusion-v1-5") | |
clip_interrogator_2 = gr.Blocks.load(name="spaces/fffiloni/CLIP-Interrogator-2") | |
def get_images(prompt): | |
gallery_dir = stable_diffusion(prompt, fn_index=2) | |
img_results = [os.path.join(gallery_dir, img) for img in os.listdir(gallery_dir)] | |
return img_results[0] | |
def get_new_prompt(img, mode): | |
interrogate = clip_interrogator_2(img, mode, 12, api_name="clipi2") | |
return interrogate | |
def infer(input): | |
prompt = pipe(input+',', num_return_sequences=1)[0]["generated_text"] | |
img = get_images(prompt) | |
result = get_new_prompt(img, 'fast') | |
return prompt,result[0] | |
input_prompt = gr.Text(label="Enter the initial prompt") | |
sd1_output = gr.Text(label="Extended prompt suitable for Stable Diffusion 1.x") | |
sd2_output = gr.Text(label="Extended prompt suitable for Stable Diffusion 2.x") | |
description=""" | |
<p style="text-align:center;"> | |
Since Stable Diffusion 2 uses OpenCLIP ViT-H model trained on LAION dataset compared to the OpenAI ViT-L we're all used to prompting, the prompting style varies and the exact prompt is often hard to write. | |
<br />This demo extends an initial idea and generates suitable prompts compatible with v1.x stable diffusion and v2.x stable diffusion, | |
<br />by generating an image through <a href="https://huggingface.co/runwayml/stable-diffusion-v1-5" target="_blank">RunwayML Stable Diffusion 1.5</a>, then Interrogate the resulting image through <a href="https://huggingface.co/spaces/fffiloni/CLIP-Interrogator-2" target="_blank">CLIP Interrogator 2</a> to give you a Stable Diffusion 2 equivalent prompt. | |
</p> | |
""" | |
demo = gr.Interface(fn=infer, inputs=input_prompt, outputs=[sd1_output,sd2_output], description = description) | |
demo.queue(max_size=10,concurrency_count=20) | |
demo.launch(enable_queue=True) |