Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
# Initialize the Inference Client for the GPT-2 model (or "gpttrash") | |
client = InferenceClient("gpt2") | |
def respond(message, history, max_tokens, temperature, top_p): | |
messages = [] | |
# Add the conversation history (user and assistant exchanges) | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
# Add the current user message to continue the conversation | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
# Get the model's response using chat completion | |
for response_chunk in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = response_chunk.choices[0].delta.content | |
response += token | |
yield response | |
# Create Gradio Blocks layout for Hugging Face Spaces | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
user_input = gr.Textbox(label="User Input") | |
history = gr.State() # Keeps conversation history | |
with gr.Row(): | |
max_tokens_slider = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") | |
temperature_slider = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") | |
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") | |
with gr.Row(): | |
output = gr.Textbox(label="Model Output") | |
# Set up the chatbot functionality | |
user_input.submit(respond, [user_input, history, max_tokens_slider, temperature_slider, top_p_slider], output) | |
if __name__ == "__main__": | |
demo.launch() | |