|
import gradio as gr |
|
import edge_tts |
|
import asyncio |
|
import tempfile |
|
import numpy as np |
|
import soxr |
|
from pydub import AudioSegment |
|
import torch |
|
import sentencepiece as spm |
|
import onnxruntime as ort |
|
from huggingface_hub import hf_hub_download, InferenceClient |
|
|
|
|
|
model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25" |
|
sample_rate = 16000 |
|
|
|
|
|
preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx")) |
|
encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx")) |
|
tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx")) |
|
|
|
|
|
client1 = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2") |
|
system_instructions1 = "[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. You will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]" |
|
|
|
def resample(audio_fp32, sr): |
|
return soxr.resample(audio_fp32, sr, sample_rate) |
|
|
|
def to_float32(audio_buffer): |
|
return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32) |
|
|
|
def transcribe(audio_path): |
|
audio_file = AudioSegment.from_file(audio_path) |
|
sr = audio_file.frame_rate |
|
audio_buffer = np.array(audio_file.get_array_of_samples()) |
|
|
|
audio_fp32 = to_float32(audio_buffer) |
|
audio_16k = resample(audio_fp32, sr) |
|
|
|
input_signal = torch.tensor(audio_16k).unsqueeze(0) |
|
length = torch.tensor(len(audio_16k)).unsqueeze(0) |
|
processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length) |
|
|
|
logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0] |
|
|
|
blank_id = tokenizer.vocab_size() |
|
decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id] |
|
text = tokenizer.decode_ids(decoded_prediction) |
|
|
|
return text |
|
|
|
def model(text): |
|
formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]" |
|
stream = client1.text_generation(formatted_prompt, max_new_tokens=300) |
|
return stream[:-4] |
|
|
|
async def respond(audio): |
|
user = transcribe(audio) |
|
reply = model(user) |
|
communicate = edge_tts.Communicate(reply) |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: |
|
tmp_path = tmp_file.name |
|
await communicate.save(tmp_path) |
|
return tmp_path |