import gradio as gr from transformers import LlavaOnevisionProcessor, LlavaOnevisionForConditionalGeneration, TextIteratorStreamer from threading import Thread import re import time from PIL import Image import torch import cv2 import spaces model_id = "llava-hf/llava-onevision-qwen2-0.5b-ov-hf" processor = LlavaOnevisionProcessor.from_pretrained(model_id) model = LlavaOnevisionForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16) model.to("cuda") def sample_frames(video_file, num_frames): video = cv2.VideoCapture(video_file) total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) interval = total_frames // num_frames frames = [] for i in range(total_frames): ret, frame = video.read() pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) if not ret: continue if i % interval == 0: frames.append(pil_img) video.release() return frames @spaces.GPU def bot_streaming(message, history): txt = message.text ext_buffer = f"user\n{txt} assistant" if message.files: if len(message.files) == 1: image = [message.files[0].path] # interleaved images or video elif len(message.files) > 1: image = [msg.path for msg in message.files] else: # if there's no image uploaded for this turn, look for images in the past turns # kept inside tuples, take the last one for hist in history: if type(hist[0])==tuple: image = hist[0][0] if message.files is None: gr.Error("You need to upload an image or video for LLaVA to work.") video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg") image_extensions = Image.registered_extensions() image_extensions = tuple([ex for ex, f in image_extensions.items()]) if len(image) == 1: if image[0].endswith(video_extensions): video = sample_frames(image[0], 32) image = None prompt = f"<|im_start|>user