Vincentqyw
update: app
d6a2afd
raw
history blame
2.92 kB
import gradio as gr
from pathlib import Path
from PIL import Image
def convert_to_webp(input_image: str = None, quality=80):
file_path = Path("caches") / "{}.{}".format(Path(input_image).stem, "webp")
file_path.parent.mkdir(parents=True, exist_ok=True)
img = Image.open(input_image)
img = img.convert("RGBA")
img.save(file_path, "WEBP", quality=quality)
# reopen and check
img_reopen = Image.open(file_path)
img_reopen = img_reopen.convert("RGBA")
return img_reopen, str(file_path)
def process(input_list, quality=80):
out_files = []
out_images = []
for path in input_list:
img_reopen, file_path = convert_to_webp(path[0], quality)
out_files.append(file_path)
out_images.append(img_reopen)
return out_files, out_images
def swap_to_gallery(images):
return (
gr.update(value=images, visible=True),
gr.update(visible=True),
gr.update(visible=False),
)
def run(server_name="127.0.0.1", server_port=7860):
with gr.Blocks() as app:
gr.Markdown(
"""
# WebP Converter
Upload one or more image files and convert it to WebP format with adjustable quality.
![]('F:/gradio-apps/image_to_webp/caches/1.webp')
"""
)
with gr.Row(equal_height=False):
with gr.Column():
files = gr.Files(
label="Drag 1 or more photos of your face",
file_types=["image"],
)
uploaded_files = gr.Gallery(
label="Your images", visible=False, columns=4, height=250
)
inputs = [
uploaded_files,
gr.Slider(
minimum=1,
maximum=100,
value=80,
step=1,
label="Quality",
),
]
btn = gr.Button("Run Convert", variant="primary")
with gr.Column():
outputs = [
gr.File(label="Converted WebP"),
gr.Gallery(
label="Re-check converted images",
show_label=False,
elem_id="gallery",
object_fit="contain",
height="auto",
columns=4,
# height=125,
),
]
files.upload(
fn=swap_to_gallery,
inputs=files,
outputs=[uploaded_files, btn, files],
)
btn.click(process, inputs=inputs, outputs=outputs)
#
app.queue().launch(
server_name=server_name, server_port=server_port, share=False
)
if __name__ == "__main__":
run(server_name="0.0.0.0", server_port=7860)