Spaces:
Running
Running
File size: 8,487 Bytes
63932be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import numpy as np
import argparse
import copy
import os, sys
import open3d as o3d
from sys import argv, exit
from PIL import Image
import math
from tqdm import tqdm
import cv2
sys.path.append("../../")
from lib.extractMatchTop import getPerspKeypoints, getPerspKeypointsEnsemble, siftMatching
import pandas as pd
import torch
from lib.model_test import D2Net
#### Cuda ####
use_cuda = torch.cuda.is_available()
device = torch.device('cuda:0' if use_cuda else 'cpu')
#### Argument Parsing ####
parser = argparse.ArgumentParser(description='RoRD ICP evaluation on a DiverseView dataset sequence.')
parser.add_argument('--dataset', type=str, default='/scratch/udit/realsense/RoRD_data/preprocessed/',
help='path to the dataset folder')
parser.add_argument('--sequence', type=str, default='data1')
parser.add_argument(
'--output_dir', type=str, default='out',
help='output directory for RT estimates'
)
parser.add_argument(
'--model_rord', type=str, help='path to the RoRD model for evaluation'
)
parser.add_argument(
'--model_d2', type=str, help='path to the vanilla D2-Net model for evaluation'
)
parser.add_argument(
'--model_ens', action='store_true',
help='ensemble model of RoRD + D2-Net'
)
parser.add_argument(
'--sift', action='store_true',
help='Sift'
)
parser.add_argument(
'--viz3d', action='store_true',
help='visualize the pointcloud registrations'
)
parser.add_argument(
'--log_interval', type=int, default=9,
help='Matched image logging interval'
)
parser.add_argument(
'--camera_file', type=str, default='../../configs/camera.txt',
help='path to the camera intrinsics file. In order: focal_x, focal_y, center_x, center_y, scaling_factor.'
)
parser.add_argument(
'--persp', action='store_true', default=False,
help='Feature matching on perspective images.'
)
parser.set_defaults(fp16=False)
args = parser.parse_args()
if args.model_ens: # Change default paths accordingly for ensemble
model1_ens = '../../models/rord.pth'
model2_ens = '../../models/d2net.pth'
def draw_registration_result(source, target, transformation):
source_temp = copy.deepcopy(source)
target_temp = copy.deepcopy(target)
source_temp.transform(transformation)
trgSph.append(source_temp); trgSph.append(target_temp)
axis1 = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.5, origin=[0, 0, 0])
axis2 = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.5, origin=[0, 0, 0])
axis2.transform(transformation)
trgSph.append(axis1); trgSph.append(axis2)
o3d.visualization.draw_geometries(trgSph)
def readDepth(depthFile):
depth = Image.open(depthFile)
if depth.mode != "I":
raise Exception("Depth image is not in intensity format")
return np.asarray(depth)
def readCamera(camera):
with open (camera, "rt") as file:
contents = file.read().split()
focalX = float(contents[0])
focalY = float(contents[1])
centerX = float(contents[2])
centerY = float(contents[3])
scalingFactor = float(contents[4])
return focalX, focalY, centerX, centerY, scalingFactor
def getPointCloud(rgbFile, depthFile, pts):
thresh = 15.0
depth = readDepth(depthFile)
rgb = Image.open(rgbFile)
points = []
colors = []
corIdx = [-1]*len(pts)
corPts = [None]*len(pts)
ptIdx = 0
for v in range(depth.shape[0]):
for u in range(depth.shape[1]):
Z = depth[v, u] / scalingFactor
if Z==0: continue
if (Z > thresh): continue
X = (u - centerX) * Z / focalX
Y = (v - centerY) * Z / focalY
points.append((X, Y, Z))
colors.append(rgb.getpixel((u, v)))
if((u, v) in pts):
index = pts.index((u, v))
corIdx[index] = ptIdx
corPts[index] = (X, Y, Z)
ptIdx = ptIdx+1
points = np.asarray(points)
colors = np.asarray(colors)
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
pcd.colors = o3d.utility.Vector3dVector(colors/255)
return pcd, corIdx, corPts
def convertPts(A):
X = A[0]; Y = A[1]
x = []; y = []
for i in range(len(X)):
x.append(int(float(X[i])))
for i in range(len(Y)):
y.append(int(float(Y[i])))
pts = []
for i in range(len(x)):
pts.append((x[i], y[i]))
return pts
def getSphere(pts):
sphs = []
for element in pts:
if(element is not None):
sphere = o3d.geometry.TriangleMesh.create_sphere(radius=0.03)
sphere.paint_uniform_color([0.9, 0.2, 0])
trans = np.identity(4)
trans[0, 3] = element[0]
trans[1, 3] = element[1]
trans[2, 3] = element[2]
sphere.transform(trans)
sphs.append(sphere)
return sphs
def get3dCor(src, trg):
corr = []
for sId, tId in zip(src, trg):
if(sId != -1 and tId != -1):
corr.append((sId, tId))
corr = np.asarray(corr)
return corr
if __name__ == "__main__":
camera_file = args.camera_file
rgb_csv = args.dataset + args.sequence + '/rtImagesRgb.csv'
depth_csv = args.dataset + args.sequence + '/rtImagesDepth.csv'
os.makedirs(os.path.join(args.output_dir, 'vis'), exist_ok=True)
dir_name = args.output_dir
os.makedirs(args.output_dir, exist_ok=True)
focalX, focalY, centerX, centerY, scalingFactor = readCamera(camera_file)
df_rgb = pd.read_csv(rgb_csv)
df_dep = pd.read_csv(depth_csv)
model1 = D2Net(model_file=args.model_d2).to(device)
model2 = D2Net(model_file=args.model_rord).to(device)
queryId = 0
for im_q, dep_q in tqdm(zip(df_rgb['query'], df_dep['query']), total=df_rgb.shape[0]):
filter_list = []
dbId = 0
for im_d, dep_d in tqdm(zip(df_rgb.iteritems(), df_dep.iteritems()), total=df_rgb.shape[1]):
if im_d[0] == 'query':
continue
rgb_name_src = os.path.basename(im_q)
H_name_src = os.path.splitext(rgb_name_src)[0] + '.npy'
srcH = args.dataset + args.sequence + '/rgb/' + H_name_src
rgb_name_trg = os.path.basename(im_d[1][1])
H_name_trg = os.path.splitext(rgb_name_trg)[0] + '.npy'
trgH = args.dataset + args.sequence + '/rgb/' + H_name_trg
srcImg = srcH.replace('.npy', '.jpg')
trgImg = trgH.replace('.npy', '.jpg')
if args.model_rord:
if args.persp:
srcPts, trgPts, matchImg, _ = getPerspKeypoints(srcImg, trgImg, HFile1=None, HFile2=None, model=model2, device=device)
else:
srcPts, trgPts, matchImg, _ = getPerspKeypoints(srcImg, trgImg, srcH, trgH, model2, device)
elif args.model_d2:
if args.persp:
srcPts, trgPts, matchImg, _ = getPerspKeypoints(srcImg, trgImg, HFile1=None, HFile2=None, model=model2, device=device)
else:
srcPts, trgPts, matchImg, _ = getPerspKeypoints(srcImg, trgImg, srcH, trgH, model1, device)
elif args.model_ens:
model1 = D2Net(model_file=model1_ens)
model1 = model1.to(device)
model2 = D2Net(model_file=model2_ens)
model2 = model2.to(device)
srcPts, trgPts, matchImg = getPerspKeypointsEnsemble(model1, model2, srcImg, trgImg, srcH, trgH, device)
elif args.sift:
if args.persp:
srcPts, trgPts, matchImg, _ = siftMatching(srcImg, trgImg, HFile1=None, HFile2=None, device=device)
else:
srcPts, trgPts, matchImg, _ = siftMatching(srcImg, trgImg, srcH, trgH, device)
if(isinstance(srcPts, list) == True):
print(np.identity(4))
filter_list.append(np.identity(4))
continue
srcPts = convertPts(srcPts)
trgPts = convertPts(trgPts)
depth_name_src = os.path.dirname(os.path.dirname(args.dataset)) + '/' + dep_q
depth_name_trg = os.path.dirname(os.path.dirname(args.dataset)) + '/' + dep_d[1][1]
srcCld, srcIdx, srcCor = getPointCloud(srcImg, depth_name_src, srcPts)
trgCld, trgIdx, trgCor = getPointCloud(trgImg, depth_name_trg, trgPts)
srcSph = getSphere(srcCor)
trgSph = getSphere(trgCor)
axis = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.5, origin=[0, 0, 0])
srcSph.append(srcCld); srcSph.append(axis)
trgSph.append(trgCld); trgSph.append(axis)
corr = get3dCor(srcIdx, trgIdx)
p2p = o3d.pipelines.registration.TransformationEstimationPointToPoint()
trans_init = p2p.compute_transformation(srcCld, trgCld, o3d.utility.Vector2iVector(corr))
# print(trans_init)
filter_list.append(trans_init)
if args.viz3d:
o3d.visualization.draw_geometries(srcSph)
o3d.visualization.draw_geometries(trgSph)
draw_registration_result(srcCld, trgCld, trans_init)
if(dbId%args.log_interval == 0):
cv2.imwrite(os.path.join(args.output_dir, 'vis') + "/matchImg.%02d.%02d.jpg"%(queryId, dbId//args.log_interval), matchImg)
dbId += 1
RT = np.stack(filter_list).transpose(1,2,0)
np.save(os.path.join(dir_name, str(queryId) + '.npy'), RT)
queryId += 1
print('-----check-------', RT.shape)
|